Reliability of the biceps brachii M-wave
Tóm tắt
The peak-to-peak (P-P) amplitude of the maximum M-wave and the area of the negative phase of the curve are important measures that serve as methodological controls in H-reflex studies, motor unit number estimation (MUNE) procedures, and normalization factors for voluntary electromyographic (EMG) activity. These methodologies assume, with little evidence, that M-wave variability is minimal. This study therefore examined the intraclass reliability of these measures for the biceps brachii. Twenty-two healthy adults (4 males and 18 females) participated in 5 separate days of electrical stimulation of the musculocutaneous nerve supplying the biceps brachii muscle. A total of 10 stimulations were recorded on each of the 5 test sessions: a total of fifty trials were used for analysis. A two-factor repeated measures analysis of variance (ANOVA) evaluated the stability of the group means across test sessions. The consistency of scores within individuals was determined by calculating the intraclass correlation coefficient (ICC). The variance ratio (VR) was then used to assess the reproducibility of the shape of the maximum M-wave within individual subjects. The P-P amplitude means ranged from 12.62 ± 4.33 mV to 13.45 ± 4.07 mV across test sessions. The group means were highly stable. ICC analysis also revealed that the scores were very consistent (ICC = 0.98). The group means for the area of the negative phase of the maximum M-wave were also stable (117 to 126 mV·ms). The ICC analysis also indicated a high degree of consistency (ICC = 0.96). The VR for the sample was 0.244 ± 0.169, which suggests that the biceps brachii maximum M-wave shape was in general very reproducible for each subject. The results support the use of P-P amplitude of the maximum M-wave as a methodological control in H-reflex studies, and as a normalization factor for voluntary EMG. The area of the negative phase of the maximum M-wave is both stable and consistent, and the shape of the entire waveform is highly reproducible and may be used for MUNE procedures.
Tài liệu tham khảo
Maffiuletti NA, Martin A, Babault N, Pensini M, Lucas B, Schieppati M: Electrical and mechanical H max -to-M max ratio in power- and endurance-trained athletes. J Appl Physiol 2001, 90: 3-9.
Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P: Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol 2002, 92: 2309-2318.
Crone C, Johnsen LL, Hultborn H, Ørnes GB: Amplitude of the maximum motor response (Mmax) in human muscles typically decreases during the course of an experiment. Exp Brain Res 1999, 124: 265-270. 10.1007/s002210050621
Boe S, Stashuk DW, Doherty TJ: Motor unit number estimation by decomposition-enhanced spike-triggered averaging: control data, test-retest reliability, and contractile level effects. Muscle Nerve 2004, 29: 693-699. 10.1002/mus.20031
Scaglioni G, Ferri A, Minetti AE, Martin A, Van Hoeck J, Capodaglio P, Sartorio A, Narci MV: Plantar flexor activation capacity and H reflex in older adults: adaptations to strength training. J Appl Physiol 2002, 92: 2292-2302.
Carolan B, Cafarelli E: Adaptations in coactivation after isometric resistance training. J Appl Physiol 1992, 73: 911-917.
Rich C, Cafarelli E: Submaximal motor unit firing rates after 8 wk of isometric resistance training. Med Sci Sport Exerc 2000, 32: 190-196. 10.1097/00005768-200001000-00028
Jaberzadeh S, Scutter S, Warden-Flood A, Nazeran H: Between-days reliability of H- reflexes in human flexor carpi radialis. Arch Phys Med Rehabil 2004, 85: 1168-1173. 10.1016/j.apmr.2003.09.009
Shefner JM, Jillapalli D, Bradshaw DY: Reducing intersubject variability in motor unit number estimation. Muscle Nerve 1999, 22: 1457-1460. 10.1002/(SICI)1097-4598(199910)22:10<1457::AID-MUS18>3.0.CO;2-T
Williams LRT, Sullivan SJ, Seaborne DE, Morelli M: Reliability of individual differences for H-reflex recordings. Electromyogr Clin Neurophysiol 1992, 32: 42-49.
Merletti R, Lo Conte LR, Sathyan D: Repeatability of electrically-evoked myoelectric signals from the human tibialis anterior muscle. J Electromyogr Kinesiol 1995, 5: 67-80. 10.1016/1050-6411(94)00004-6
Merletti R, Fiorito A, Lo Conte LR, Cisari C: Repeatability of electrically-evoked EMG signals in the human vastus lateralis. Muscle Nerve 1998, 21: 184-193. 10.1002/(SICI)1097-4598(199802)21:2<184::AID-MUS5>3.0.CO;2-7
Pierrot-Deseilligny E, Mazevet D: The monosynaptic reflex: a tool to investigate motor control in humans: interest and limit. Clin Neurophysiol 2000, 30: 67-80.
Christie A, Lester S, LaPierre D, Gabriel DA: Reliability of a new measure of motoneuron excitability. Clin Neurophysiol 2004, 115: 116-123. 10.1016/S1388-2457(03)00306-7
Christie A, Inglis GI, Boucher JP, Gabriel DA: Reliability of the FCR H-reflex. J Clin Neurophysiol 2005, 22: 204-209.
Feldt LS, McKee ME: Estimation of the reliability of skill tests. Res Quart 1958, 29: 279-293.
Kroll W: Reliability of a selected measure of human strength. Res Quart 1962, 33: 410-417.
Lindquist EF: Design and analysis of experiments in psychology and education. Boston: Houghton Mifflin Company; 1956.
Weir JP: Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Stren Cond Res 2005, 19: 231-240. 10.1519/15184.1
Hershler C, Milner M: An optimality criterion for processing electromyographic (EMG) signals relating to human locomotion. IEEE Trans Biomed Eng 1978, 5: 413-420.
Jacobson WC, Gabel RH, Brand RA: Surface vs. fine-wire electrode ensemble-averaged signals during gait. J Electromyogr Kinesiol 1995, 5: 37-44. 10.1016/S1050-6411(99)80004-2
Taylor JL, Butler JE, Gandevia SC: Altered responses of human elbow flexors to peripheral-nerve and cortical stimulation during a sustained maximal voluntary contraction. Exp Brain Res 1999, 127: 108-115. 10.1007/s002210050779
Allman BL, Rice CL: Incomplete recovery of voluntary isometric fatigue is not affected by old age. Muscle Nerve 2001, 24: 1156-1167. 10.1002/mus.1127
Rutkove SB: Pseudofacilitation: a temperature-sensitive phenonmenon. Muscle Nerve 2000, 23: 115-118. 10.1002/(SICI)1097-4598(200001)23:1<115::AID-MUS16>3.0.CO;2-5
Magladery JW, Porter WE, Park AM, Teasdall RD: Electrophysiological studies of nerve and reflex activity in normal man. Bull Johns Hopkins Hosp 1951, 88: 499-519.
Simmons Z, Epstein DK, Borg B, Mauger DT, Kothari MJ, Shefner JM: Reproducibility of motor unit number estimation. Muscle Nerve 2001, 24: 467-473. 10.1002/mus.1028
Preston DC, Shapiro BE: Electromyography and Neuromuscular Disorders: Clinical-Electrophysiologic Correlations. Boston: Butterworth-Heinemann; 1998.