Persistence probabilities of weighted sums of stationary Gaussian sequences
Tài liệu tham khảo
Adler, 2007
Aurzada, 2011, Survival probabilities of weighted random walks, ALEA Lat. Am. J. Probab. Math. Stat., 8, 235
Aurzada, 2018, Persistence probabilities of two-sided (integrated) sums of correlated stationary Gaussian sequences, J. Stat. Phys., 170, 784, 10.1007/s10955-018-1954-8
Aurzada, 2018, Persistence probabilities for stationary increment processes, Stochastic Process. Appl., 128, 1750, 10.1016/j.spa.2017.07.016
Aurzada, 2020
Aurzada, 2021, Persistence exponents in Markov chains, Ann. Inst. Henri Poincaré Probab. Stat., 57, 1411, 10.1214/20-AIHP1114
Aurzada, 2015, Persistence probabilities and exponents, vol. 2149, 183
Bertoin, 1996, Lévy processes
Bingham, 1987, Regular variation
Bray, 2013, Persistence and first-passage properties in non-equilibrium systems, Adv. Phys., 62, 225, 10.1080/00018732.2013.803819
Dembo, 2015, No zero-crossings for random polynomials and the heat equation, Ann. Probab., 43, 85, 10.1214/13-AOP852
Dembo, 2017, Persistence of Gaussian processes: non-summable correlations, Probab. Theory Related Fields, 169, 1007, 10.1007/s00440-016-0746-9
Dembo, 2002, Random polynomials having few or no real zeros, J. Amer. Math. Soc., 15, 857, 10.1090/S0894-0347-02-00386-7
Denisov, 2018, First-passage times for random walks with non-identically distributed increments, Ann. Probab., 46, 3313, 10.1214/17-AOP1248
Doney, 1995, Spitzer’s condition and ladder variables in random walks, Probab. Theory Related Fields, 101, 577, 10.1007/BF01202785
Doney, 2007, Fluctuation theory for Lévy processes, vol. 1897, 6
Feldheim, 2015, Long gaps between sign-changes of Gaussian stationary processes, Int. Math. Res. Not., 11, 3012
Feldheim, 2020, On the probability that a stationary Gaussian process with spectral gap remains non-negative on a long interval, Int. Math. Res. Not., 23, 9210, 10.1093/imrn/rny248
Feldheim, 2021
Feldheim, 2021, Persistence of Gaussian stationary processes: a spectral perspective, Ann. Probab., 49, 1067, 10.1214/20-AOP1470
Feller, 1971, vol. 2
Forrester, 2008, The importance of the Selberg integral, Bull. Amer. Math. Soc., 45, 489, 10.1090/S0273-0979-08-01221-4
Horn, 2012
Latała, 2017, Royen’s proof of the Gaussian correlation inequality, vol. 2169, 265
Li, 2005, Recent developments on lower tail probabilities for Gaussian processes, Cosmos, 1, 95, 10.1142/S0219607705000103
Lyu, 2019, Persistence of sums of correlated increments and clustering in cellular automata, Stochastic Process. Appl., 129, 1132, 10.1016/j.spa.2018.04.012
Majumdar, 1999, Persistence in nonequilibrium systems, Current Sci., 77, 370
Mishura, 2008
Molchan, 1999, Maximum of a fractional Brownian motion: probabilities of small values, Comm. Math. Phys., 205, 97, 10.1007/s002200050669
Royen, 2014, A simple proof of the Gaussian correlation conjecture extended to some multivariate gamma distributions, Far East J. Theor. Stat., 48, 139
Salcedo-Sanz, 2022, Persistence in complex systems, Phys. Rep., 957, 1, 10.1016/j.physrep.2022.02.002
Sato, 1999, vol. 68