Persistence probabilities of weighted sums of stationary Gaussian sequences

Stochastic Processes and their Applications - Tập 159 - Trang 286-319 - 2023
Frank Aurzada, Sumit Mukherjee

Tài liệu tham khảo

Adler, 2007 Aurzada, 2011, Survival probabilities of weighted random walks, ALEA Lat. Am. J. Probab. Math. Stat., 8, 235 Aurzada, 2018, Persistence probabilities of two-sided (integrated) sums of correlated stationary Gaussian sequences, J. Stat. Phys., 170, 784, 10.1007/s10955-018-1954-8 Aurzada, 2018, Persistence probabilities for stationary increment processes, Stochastic Process. Appl., 128, 1750, 10.1016/j.spa.2017.07.016 Aurzada, 2020 Aurzada, 2021, Persistence exponents in Markov chains, Ann. Inst. Henri Poincaré Probab. Stat., 57, 1411, 10.1214/20-AIHP1114 Aurzada, 2015, Persistence probabilities and exponents, vol. 2149, 183 Bertoin, 1996, Lévy processes Bingham, 1987, Regular variation Bray, 2013, Persistence and first-passage properties in non-equilibrium systems, Adv. Phys., 62, 225, 10.1080/00018732.2013.803819 Dembo, 2015, No zero-crossings for random polynomials and the heat equation, Ann. Probab., 43, 85, 10.1214/13-AOP852 Dembo, 2017, Persistence of Gaussian processes: non-summable correlations, Probab. Theory Related Fields, 169, 1007, 10.1007/s00440-016-0746-9 Dembo, 2002, Random polynomials having few or no real zeros, J. Amer. Math. Soc., 15, 857, 10.1090/S0894-0347-02-00386-7 Denisov, 2018, First-passage times for random walks with non-identically distributed increments, Ann. Probab., 46, 3313, 10.1214/17-AOP1248 Doney, 1995, Spitzer’s condition and ladder variables in random walks, Probab. Theory Related Fields, 101, 577, 10.1007/BF01202785 Doney, 2007, Fluctuation theory for Lévy processes, vol. 1897, 6 Feldheim, 2015, Long gaps between sign-changes of Gaussian stationary processes, Int. Math. Res. Not., 11, 3012 Feldheim, 2020, On the probability that a stationary Gaussian process with spectral gap remains non-negative on a long interval, Int. Math. Res. Not., 23, 9210, 10.1093/imrn/rny248 Feldheim, 2021 Feldheim, 2021, Persistence of Gaussian stationary processes: a spectral perspective, Ann. Probab., 49, 1067, 10.1214/20-AOP1470 Feller, 1971, vol. 2 Forrester, 2008, The importance of the Selberg integral, Bull. Amer. Math. Soc., 45, 489, 10.1090/S0273-0979-08-01221-4 Horn, 2012 Latała, 2017, Royen’s proof of the Gaussian correlation inequality, vol. 2169, 265 Li, 2005, Recent developments on lower tail probabilities for Gaussian processes, Cosmos, 1, 95, 10.1142/S0219607705000103 Lyu, 2019, Persistence of sums of correlated increments and clustering in cellular automata, Stochastic Process. Appl., 129, 1132, 10.1016/j.spa.2018.04.012 Majumdar, 1999, Persistence in nonequilibrium systems, Current Sci., 77, 370 Mishura, 2008 Molchan, 1999, Maximum of a fractional Brownian motion: probabilities of small values, Comm. Math. Phys., 205, 97, 10.1007/s002200050669 Royen, 2014, A simple proof of the Gaussian correlation conjecture extended to some multivariate gamma distributions, Far East J. Theor. Stat., 48, 139 Salcedo-Sanz, 2022, Persistence in complex systems, Phys. Rep., 957, 1, 10.1016/j.physrep.2022.02.002 Sato, 1999, vol. 68