A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity

Nature Communications - Tập 7 Số 1
Carmen M. Fernández‐Posada1, A. Castro1, Jean‐Michel Kiat2, Florence Porcher3, O. Peña4, Miguel Algueró1, Harvey Amorín1
1Instituto de Ciencia de Materiales de Madrid (CSIC) – Cantoblanco, Madrid 28049, Spain
2Laboratoire Structures, Propriétés et Modélisation des Solides, Associé au CNRS (UMR8580), Ecole Centrale Paris, Chatenay-Malabry, 92295, France
3Laboratoire Léon Brillouin, UMR 12 CEA-CNRS, CEA/Saclay, Gif-Sur-Yvette Cedex, 91991, France
4Institut des Sciences Chimiques de Rennes, Associé au CNRS (UMR 6226), Université de Rennes 1, Rennes, 35042, France

Tóm tắt

AbstractThere is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO3–BiCoO3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO3–BiMnO3–PbTiO3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.

Từ khóa


Tài liệu tham khảo

Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

Scott, J. F. Applications of magnetoelectrics. J. Mater. Chem. 22, 4567–4574 (2012).

Fusil, S., Garcia, V., Barthelemy, A. & Bibes, M. Magnetoelectric devices for spintronics. Annu. Rev. Mater. Res. 44, 91–116 (2014).

Bibes, M. & Barthelemy, A. Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008).

Cheong, S. W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).

Kimura, T. Magnetoelectric hexaferrites. Annu. Rev. Condens. Matter Phys. 3, 93–110 (2012).

Bristowe, N. C., Varignon, J., Fontaine, D., Bousquet, E. & Ghosez, Ph. Ferromagnetism induced by entangled charge and orbital orderings in ferroelectric titanate perovskites. Nat. Commun. 6, 6677 (2015).

Ravindran, P., Vidaya, R., Eriksson, O. & Fjellväg, H. Magnetic-instability giant magnetoelectric coupling. Adv. Mater. 20, 1353–1356 (2008).

Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009).

Rahmedov, D., Wang, D., Iñiguez, J. & Bellaiche, L. Magnetic cycloid of BiFeO3 from atomistic simulations. Phys. Rev. Lett. 109, 037207 (2012).

Ederer, C. & Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401 (2005).

Albrecht, D. et al. Ferromagnetism in multiferroic BiFeO3 films: a first-principles-based study. Phys. Rev. B 81, 140401(R) (2010).

Bai, F. et al. Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitaxial constraint: enhanced polarization and release of latent magnetization. Appl. Phys. Lett. 86, 032511 (2005).

Khomchenko, V. A. et al. Effect of diamagnetic Ca, Sr, Pb and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite. J. Appl. Phys. 103, 024105 (2008).

Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006).

Lebeugle, D. et al. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100, 227602 (2008).

Wu, S. M. et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756–761 (2010).

Sando, D., Barthelemy, A. & Bibes, M. BiFeO3 epitaxial thin films and devices: past, present and future. J. Phys.: Condens. Matter 26, 473201 (2014).

Pantel, D., Goetze, S., Hesse, D. & Alexe, M. Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nat. Mater. 11, 289–293 (2012).

Cherifi, R. O. et al. Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345–351 (2014).

Zhao, H. J. et al. Near room-temperature multiferroic materials with tunable ferromagnetic and electrical properties. Nat. Commun. 5, 4021 (2014).

Tokunaga, M. et al. Magnetic control of transverse electric polarization in BiFeO3 . Nat. Commun. 6, 5878 (2015).

Kumar, A. et al. Magnetic control of large room-temperature polarization. J. Phys.: Condens. Matter 21, 382204 (2009).

Scott, J. F. Room-temperature multiferroic magnetoelectrics. NPG Asia Mater. 5, e72 (2013).

Evans, D. et al. Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT. Nat. Commun. 4, 1534 (2013).

Keeney, L. et al. Magnetic field-induced ferroelectric switching in multiferroic Aurivillius phase thin films at room temperature. J. Am. Ceram. Soc. 96, 2339–2357 (2013).

Dieguez, O. & Iniquez, J. First-principles investigation of morphotropic transitions and phase-change functional responses in BiFeO3–BiCoO3 multiferroic solid solutions. Phys. Rev. Lett. 107, 057601 (2011).

Durbin, M. K., Jacobs, E. W., Hicks, J. C. & Park, S. E. In situ X-ray diffraction study of an electric field induced phase transition in the single crystal relaxor ferroelectric 92% Pb(Zn1/3Nb2/3)O3–8% PbTiO3 . Appl. Phys. Lett. 74, 2848–2850 (1999).

Oka, K. et al. Polarization rotation in them monoclinic perovskite BiCo1−xFexO3 . Angew Chem. Int. Ed. 51, 7977–7980 (2012).

Guo, R. et al. Origin of the high piezoelectric response in PbZr1−xTixO3 . Phys. Rev. Lett. 84, 5423 (2000).

Damjanovic, D. Comments on origins of enhanced piezoelectric properties in ferroelectrics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1574–1585 (2009).

Wojdel, J. C. & Iñiguez, J. Ab initio indications for giant magnetoelectric effects driven by structural softness. Phys. Rev. Lett. 105, 037208 (2010).

Zhu, W. M., Guo, H. Y. & Ye, Z. G. Structural and magnetic characterization of multiferroic (BiFeO3)1−x(PbTiO3)x solid solutions. Phys. Rev. B 78, 014401 (2008).

Comyn, T. P. et al. Phase-specific magnetic ordering in BiFeO3–PbTiO3 . Appl. Phys. Lett. 93, 232901 (2008).

Bhattacharjee, S. & Pandey, D. Stability of the various crystallographic phases of the multiferroic (1−x)BiFeO3−xPbTiO3 system as a function of composition and temperature. J. Appl. Phys. 107, 124112 (2010).

Correas, C., Hungria, T. & Castro, A. Mechanosynthesis of the whole xBiFeO3-(1−x)PbTiO3 multiferroic system: structural characterization and study of phase transitions. J. Mater. Chem. 21, 3125–3132 (2011).

Amorin, H. et al. Very high remnant polarization and phase-change electromechanical response of BiFeO3-PbTiO3 at the multiferroic morphotropic phase boundary. Appl. Phys. Lett. 101, 172908 (2012).

Amorin, H. et al. Multiferroism and enhancement of material properties across the morphotropic phase boundary of BiFeO3–PbTiO3 . J. Appl. Phys. 115, 104104 (2014).

Bhattacharjee, S., Senyshyn, A., Fuess, H. & Pandey, D. Morin-type spin reorientation transition below the Néel transition in the monoclinic compositions of (1−x)BiFeO3−xPbTiO3 (x=0.25 and 0.27): a combined dc magnetization and x-ray and neutron powder diffraction study. Phys. Rev. B 87, 054417 (2013).

Fernandez-Posada, C. M. et al. Mechanosynthesis and multiferroic properties of the BiFeO3–BiMnO3–PbTiO3 ternary system along its morphotropic phase boundary. J. Mater. Chem. C 3, 2255–2265 (2015).

Petricek, V., Dusek, M. & Palatinus, L. Crystallographic Computing System JANA2006: general features. Z. Kristallogr. 229, 345–352 (2014).

Stephens, P. W. Phenomenological model of anisotropic peak broadening in powder diffraction. J. Appl. Cryst. 32, 281–289 (1999).

Kothai, V., Senyshyn, A. & Ranjan, R. Competing structural phase transition scenarios in the giant tetragonality ferroelectric BiFeO3–PbTiO3: isostructural vs multiphase transition. J. Appl. Phys. 114, 084102 (2013).

Golosovsky, I. V. et al. Neutron diffraction study of the (BiFeO3)1−x(PbTiO3)x solid solution: nanostructured multiferroic system. J. Phys.: Condens. Matter 27, 046004 (2015).

Leist, T., Granzow, T., Jo, W. & Rödel, J. Effect of tetragonal distortion on ferroelectric domain switching: a case study on La-doped BiFeO3–PbTiO3 ceramics. J. Appl. Phys. 108, 014103 (2010).

Lebeugle, D., Colson, D., Forrget, A. & Viret, M. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl. Phys. Lett. 91, 022907 (2007).

Ederer, C. & Spaldin, N. A. Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 95, 257601 (2005).

Zhang, J. X. et al. Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO3 . Phys. Rev. Lett. 107, 147602 (2011).

Bellaiche, L., Gui, Z. & Kornev, I. A. A simple law governing coupled magnetic orders in perovskites. J. Phys.: Condens. Matter 24, 312201 (2012).

Sanchez, D. A. et al. Room-temperature single phase multiferroic magnetoelectrics: Pb(Fe, M)x (Zr,Ti)(1−x)O3 [M=Ta, Nb]. J. Appl. Phys. 113, 074105 (2013).

Zeches, R. J. et al. A strain-driven morphotropic phase boundary in BiFeO3 . Science 326, 977–980 (2009).

He, Q. et al. Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics. Nat. Commun. 2, 225 (2011).

Xu, B., Wang, D., Iñiguez, J. & Bellaiche, L. Finite temperature properties of rare-earth-substituted BiFeO3 multiferroic solid solutions. Adv. Funct. Mater. 25, 552–558 (2014).