Biorefinery lignosulfonates as a dispersant for coal water slurry
Tóm tắt
Valorization of lignin from biofuel production is the key to developing biorefinery technologies for sustainable and economic utilization of lignocellulosic biomass. Here we present isolating lignosulfonate from the spent liquors of Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL)-pretreated lodgepole pine and Douglas-fir forest residue as a dispersant for coal water slurry. The two SPORL pretreatments were conducted at a pilot scale and resulted in very high ethanol yield from the pretreated biomass. Therefore, demonstrating the commercial utility of these lignosulfonates has practical significance. The two isolated biorefinery lignosulfonates (LSs), Na-LS and Ca-LS, both had a molecular weight of approximately 9000 Da. Fundamental lignin properties such as chemical structure, functional groups were analyzed. The two LSs showed slightly better to equal performance in modifying CWS rheology than a commercial dispersant naphthalene sulfonate formaldehyde condensate (FDN), despite they were less sulfonated than FDN. The practical importance of this study is that the pilot-scale pretreatments that produced the two LSs also produced excellent bioethanol yields at high titer without detoxification and washing. This suggests SPORL pretreatment is a promising technology for economic bioconversion of under-utilized woody biomass.
Tài liệu tham khảo
Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “top 10” revisited. Green Chem 12:539–554
Zhu JY, Zhuang XS (2012) Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining. Prog Energy Combust Sci 38:583–589
Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101:4992–5002
Ma R, Xu Y, Zhang X (2015) Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production. ChemSusChem 8:24–51
Zhu JY, Pan XJ, Wang GS, Gleisner R (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100:2411–2418
Zhou MS, Kong Q, Pan B, Qiu XQ, Yang DJ, Lou HM (2010) Evaluation of treated black liquor used as dispersant of concentrated coal-water slurry. Fuel 89:716–723
Phulkerd P, Thongchul N, Bunyakiat K, Petsom A (2014) Coal water slurry using dispersant synthesized from cashew nut shell liquid (CNSL). Fuel Process Technol 119:256–262
Miller BG, Miller SF, Morrison JL, Scaroni AW (1997) Cofiring coal-water slurry fuel with pulverized coal as a NOx reduction strategy. In: 14th annual international Pittsburgh coal conference, Taiyuan, Shanxi, 23–27 Sep 1997
Pisupati SV, Zarnescu V (2000) NOx reduction in pulverized coal combustors using waste coal as coal-water slurry. ACS Div Fuel Chem Prepr 45:499–503
Yang D, Qiu X, Zhou M, Lou H (2007) Properties of sodium lignosulfonate as dispersant of coal water slurry. Energy Convers Manag 48:2433–2438
Atesok G, Boylu F, Sirkeci AA, Dinçer H (2002) The effect of coal properties on the viscosity of coal–water slurries. Fuel 81:1855–1858
Li R, Yang DJ, Lou HM, Zhou MS, Qiu XQ (2012) Influence of sulfonated acetone-formaldehyde condensation used as dispersant on low rank coal-water slurry. Energy Convers Manag 64:139–144
Kakui T, Kamiya H (2004) Effect of sodium aromatic sulfonate group in anionic polymer dispersant on the viscosity of coal-water mixtures. Energy Fuels 18:652–658
Qiu XQ, Zhou MS, Yang DJ, Lou HM, Ouyang XP, Pang YX (2007) Evaluation of sulphonated acetone-formaldehyde (SAF) used in coal water slurries prepared from different coals. Fuel 86:1439–1445
Xu R, Zhuang W, He Q, Cai J, Hu B, Shen J (2009) Effects of chemical structure on the properties of carboxylate-type copolymer dispersant for coal-water slurry. AIChE J 55:2461–2467
Atesok G, Dincer H, Ozer M, Mütevellioğlu A (2005) The effects of dispersants (PSS–NSF) used in coal–water slurries on the grindability of coals of different structures. Fuel 84:801–808
Mishra S, Kanungo S (2003) Adsorption of sodium dodecyl benzenesulfonate onto coal. J Colloid Interface Sci 267:42–48
Qin Y, Yang D, Guo W, Qiu X (2015) Investigation of grafted sulfonated alkali lignin polymer as dispersant in coal-water slurry. J Ind Eng Chem 27:192–200
Zhou MS, Qiu XQ, Yang DJ, Lou HM, Ouyang XP (2007) High-performance dispersant of coal-water slurry synthesized from wheat straw alkali lignin. Fuel Process Technol 88:375–382
Abu-Dalo MA, Al-Rawashdeh NA, Ababneh A (2013) Evaluating the performance of sulfonated Kraft lignin agent as corrosion inhibitor for iron-based materials in water distribution systems. Desalination 313:105–114
Faix O (1992) Fourier transform infrared spectroscopy. In: Lin SY, Dence CW (eds) Book of methods in lignin chemistry. Springer-Verlag, Berlin
Da Silva LG, Ruggiero R, Gontijo PDM, Pinto RB, Royer B, Lima EC, Fernandes TH, Calvete T (2011) Adsorption of Brilliant Red 2BE dye from water solutions by a chemically modified sugarcane bagasse lignin. Chem Eng J 168:620–628
Tejado A, Pena C, Labidi J, Echeverria JM, Mondragon I (2007) Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour Technol 98:1655–1663
Lundquist K, Stern K (1989) Analysis of lignins by 1H NMR spectroscopy. Nord Pulp Pap Res J 4:210–213
Akiyama T, Matsumoto Y, Okuyama T, Meshitsuka G (2003) Ratio of erythro and threo forms of β-O-4 structures in tension wood lignin. Phytochemistry 64:1157–1162
Lundquist K (1992) Proton (1H) NMR spectroscopy. Methods in lignin chemistry. Springer, Berlin, pp 242–249
Redlich O, Peterson DL (1024) A useful adsorption isotherm. J Phys Chem 1959:63
Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10
Pawlik M (2005) Polymeric dispersants for coal–water slurries. Colloids Surf Asp 266:82–90
Zhou M, Qiu X, Yang D, Wang W (2007) Synthesis and evaluation of sulphonated acetone-formaldehyde resin applied as dispersant of coal-water slurry. Energy Convers Manag 48:204–209
Zhou H, Zhu JY, Gleisner R, Qiu X, Horn E, Negron J (2015) Pilot-scale demonstration of SPORL for bioconversion of lodgepole pine to bio-ethanol and lignosulfonate. Holzforschung. doi:10.1515/hf-2014-0332
Zhu JY, Chandra MS, Gu F, Gleisner R, Reiner R, Sessions J, Marrs G, Gao J, Anderson D (2015) Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: a pilot-scale evaluation. Bioresour Technol 179:390–397
Zhou H, Leu S-Y, Wu X, Zhu JY, Gleisner R, Yang D, Qiu X, Horn E (2014) Comparisons of high titer ethanol production and lignosulfonate properties by SPORL pretreatment of lodgepole pine at two temperatures. RSC Adv 4:27033–27038
Dence C (1992) Determination of carboxyl groups. Methods in lignin chemistry. Springer, Berlin, pp 458–464
de Sousa F, Reimann A, Björklund Jansson M, Nilberbrant N (2001) Estimating the amount of phenolic hydroxyl groups in lignins. In: 11th ISWPC, Nice, France 2001, vol 3. pp 649–653