Immunosenescence and macrophage functional plasticity: dysregulation of macrophage function by age‐associated microenvironmental changes

Immunological Reviews - Tập 205 Số 1 - Trang 60-71 - 2005
Robert D. Stout1, Jill Suttles2
1Department of Microbiology and Immunology, University of Louisville School of Medicine, KY 40292, USA.
2Department of Microbiology & Immunology, University of Louisville School of Medicine, Louisville, KY, USA

Tóm tắt

Summary:  The macrophage lineage displays extreme functional and phenotypic heterogeneity, which appears to be because, in large part, of the ability of macrophages to functionally adapt to changes in their tissue microenvironment. This functional plasticity of macrophages plays a critical role in their ability to respond to tissue damage and/or infection and to contribute to clearance of damaged tissue and invading microorganisms, to recruitment of the adaptive immune system, and to resolution of the wound and of the immune response. Evidence has accumulated that environmental influences, such as stromal function and imbalances in hormones and cytokines, contribute significantly to the dysfunction of the adaptive immune system. The innate immune system also appears to be dysfunctional in aged animals and humans. In this review, the hypothesis is presented and discussed that the observed age‐associated ‘dysfunction’ of macrophages is the result of their functional adaptation to the age‐associated changes in tissue environments. The resultant loss of orchestration of the manifold functional capabilities of macrophages would undermine the efficacy of both the innate and adaptive immune systems. The macrophages appear to maintain functional plasticity during this dysregulation, making them a prime target of cytokine therapy that could enhance both innate and adaptive immune systems.

Từ khóa


Tài liệu tham khảo

10.1111/j.1600-065X.1997.tb01023.x

10.1084/jem.184.5.1891

10.1093/intimm/5.9.1035

10.1186/ar1180

10.1016/S0264-410X(99)00514-9

10.1016/S0264-410X(99)00513-7

10.4049/jimmunol.172.9.5194

10.1016/S0047-6374(02)00033-7

10.1002/eji.200324310

10.1189/jlb.1103592

10.1111/j.1600-065X.1997.tb00988.x

10.1016/0197-0186(95)00138-7

10.1016/S0171-2985(97)80085-X

10.1189/jlb.72.1.101

10.4049/jimmunol.168.8.3697

10.1038/ni1104-1105

10.1038/ni1130

10.1016/j.bbi.2004.05.003

10.4049/jimmunol.165.12.6723

10.1084/jem.188.9.1603

10.1002/path.1027

10.1189/jlb.0602325

10.1038/nri978

10.1189/jlb.0504272

10.1172/JCI118286

10.1172/JCI115872

10.1016/S0008-6363(00)00287-X

10.2741/1184

10.4049/jimmunol.171.5.2610

10.1159/000056357

10.4049/jimmunol.164.12.6166

StoutRD SuttlesJ.T cell signaling of macrophage activation. Cell contact‐dependent and cytokine signals. Austin:R. G. Landes Company Springer‐Verlag 1995.

10.1096/fj.04-1853fje

10.4049/jimmunol.172.2.880

10.1159/000028079

10.1002/(SICI)1521-4141(199801)28:01<359::AID-IMMU359>3.0.CO;2-4

10.4049/jimmunol.160.11.5347

10.4049/jimmunol.163.7.3771

10.1016/0167-5699(96)10060-I

10.1002/eji.1830241235

10.1002/jlb.60.5.651

Stout RD, 1996, Impaired T cell‐mediated macrophage activation in CD40 ligand‐deficient mice, J Immunol, 156, 8, 10.4049/jimmunol.156.1.8

10.1002/eji.1830250152

10.1016/0008-8749(92)90243-I

10.1073/pnas.92.5.1614

10.1016/S0171-2985(96)80017-9

Rose DM, 1997, Fc gamma receptor cross‐linking activates p42, p38, and JNK/SAPK mitogen‐activated protein kinases in murine macrophages: role for p42MAPK in Fc gamma receptor‐stimulated TNF‐alpha synthesis, J Immunol, 158, 3433, 10.4049/jimmunol.158.7.3433

10.1124/mi.3.8.466

10.1146/annurev.immunol.20.083001.084359

10.1146/annurev.iy.02.040184.001435

Drysdale BE, 1988, Macrophage mediated tumoricidal activity: mechanisms of activation and cytotoxicity, Prog Allergy, 40, 111

10.1084/jem.164.6.2113

10.1002/eji.1830221006

10.2741/A183

10.1084/jem.158.3.670

10.1016/0047-6374(95)01573-I

10.1159/000028096

10.1084/jem.174.6.1549

10.4049/jimmunol.147.11.3815

10.1073/pnas.89.18.8676

10.4049/jimmunol.148.11.3578

10.4049/jimmunol.144.2.625

Appelberg R, 1992, In vitro effects of interleukin‐4 on interferon‐gamma‐induced macrophage activation, Immunology, 76, 553

Cheung DL, 1990, Contrasting effects of interferon‐gamma and interleukin‐4 on the interleukin‐6 activity of stimulated human monocytes, Immunology, 71, 70

10.1073/pnas.86.10.3803

10.1084/jem.181.2.537

10.1016/S1074-7613(00)80014-X

10.1084/jem.176.1.287

10.1177/09680519020080060501

10.4049/jimmunol.173.2.955

10.4049/jimmunol.170.1.508

10.4049/jimmunol.169.5.2253

10.1189/jlb.72.4.800

10.1186/1471-2172-4-5

10.1111/j.1749-6632.2002.tb04229.x

10.1002/jnr.10399

10.1046/j.1365-2567.2001.01332.x

10.2174/1568010033344499

Bacle F, 1990, Induction of IL‐1 release through stimulation of the C3b/C4b complement receptor type one (CR1,CD35) on human monocytes, J Immunol, 144, 147, 10.4049/jimmunol.144.1.147

Medvedev AE, 1998, Involvement of CD14 and complement receptors CR3 and CR4 in nuclear factor‐kappaB activation and TNF production induced by lipopolysaccharide and group B streptococcal cell walls, J Immunol, 160, 4535, 10.4049/jimmunol.160.9.4535

Lipschitz DA., 1995, Age‐related declines in hematopoietic reserve capacity, Semin Oncol, 22, 3

10.1084/jem.189.1.187

10.1016/0161-5890(90)90148-S

10.1084/jem.188.1.217

Alonso A, 1995, Nitric oxide synthesis in rat peritoneal macrophages is induced by IgE/DNP complexes and cyclic AMP analogues, J Immunol, 154, 6475, 10.4049/jimmunol.154.12.6475

Armant M, 1995, Soluble CD23 directly activates monocytes to contribute to the antigen‐independent stimulation of resting T cells, J Immunol, 155, 4868, 10.4049/jimmunol.155.10.4868

10.1084/jem.180.3.1005

10.1002/eji.200425095

10.1016/j.molimm.2004.06.012

10.1016/j.tcb.2003.10.003

10.1007/s000110050622

10.1161/01.ATV.0000103951.67680.B1

10.1002/jlb.66.5.733

10.1038/89076

Makowski L, 2004, Fatty acid binding proteins – the evolutionary crossroads of inflammatory and metabolic responses, J Nutr, 134, 2464S, 10.1093/jn/134.9.2464S

10.1084/jem.20011794

10.1002/eji.1830270924

Schmal H, 1998, Soluble ICAM‐1 activates lung macrophages and enhances lung injury, J Immunol, 161, 3685, 10.4049/jimmunol.161.7.3685

Geng Y, 1993, Protein tyrosine kinase activation is required for lipopolysaccharide induction of cytokines in human blood monocytes, J Immunol, 151, 6692, 10.4049/jimmunol.151.12.6692

10.1038/22572

10.4049/jimmunol.173.1.559

10.1074/jbc.M402594200

Elenkov IJ, 1998, Histamine potently suppresses human IL‐12 and stimulates IL‐10 production via H2 receptors, J Immunol, 161, 2586, 10.4049/jimmunol.161.5.2586

10.1016/S0091-6749(03)01881-5

10.1172/JCI19528

10.1074/jbc.M404368200

10.1189/jlb.70.2.163

10.1189/jlb.0303114

10.1002/glia.10161

10.4049/jimmunol.167.11.6533

10.1186/1471-2172-3-7

10.1002/1521-4141(200009)30:9<2669::AID-IMMU2669>3.0.CO;2-1

10.1002/jlb.66.2.205

10.4049/jimmunol.167.4.2227

10.1016/S1471-4906(02)02302-5

10.1002/jlb.53.5.602

10.1073/pnas.88.5.1963

10.1111/j.1440-1827.1996.tb03641.x

10.1016/S1074-7613(03)00174-2

10.1006/cimm.1996.0186

10.1126/science.1092864

10.1124/jpet.102.035048

10.1111/j.1749-6632.2000.tb06651.x

Kerr LD., 2004, Inflammatory arthropathy: a review of rheumatoid arthritis in older patients, Geriatrics, 59, 32

Cassetta M, 2004, Crystal arthritis. Gout and pseudogout in the geriatric patient, Geriatrics, 59, 25

10.1016/j.exger.2004.01.009

10.1016/S0140-6736(04)15900-X

10.1016/j.coi.2004.01.009

10.1038/sj.ijo.0802497

Ashcroft GS, 1998, Aging alters the inflammatory and endothelial cell adhesion molecule profiles during human cutaneous wound healing, Lab Invest, 78, 47

10.1046/j.0022-202x.2001.01539.x

Swift ME, 1999, Impaired wound repair and delayed angiogenesis in aged mice, Lab Invest, 79, 1479

10.1023/A:1007094614047

10.1378/chest.120.1.240

10.1016/0165-2478(94)00066-2

10.1016/0531-5565(90)90012-Q

10.1016/S0047-6374(01)00322-0

10.1016/0047-6374(90)90118-Y

10.1128/IAI.64.11.4456-4462.1996

10.1016/0008-8749(84)90184-9

10.1002/eji.1830250528

Zissel G, 1999, Age‐related decrease in accessory cell function of human alveolar macrophages, J Invest Med, 47, 51

10.1046/j.1469-7580.1997.19030351.x

10.1006/jsre.1999.5587

10.1006/cyto.2000.0679

Inamizu T, 1985, Influence of age on the production and regulation of interleukin‐1 in mice, Immunology, 55, 447

10.1016/0047-6374(94)01524-P

10.1189/jlb.0803389

10.4049/jimmunol.163.6.3468

10.1016/0047-6374(95)01573-I

10.1006/cimm.1996.0103

10.1016/S0171-2985(01)80005-X

Khare V, 1996, Effect of aging on the tumoricidal functions of murine peritoneal macrophages, Nat Immun, 15, 285

10.1086/513959

10.1006/cimm.1996.0103

Ding A, 1994, Effect of aging on murine macrophages. Diminished response to IFN‐gamma for enhanced oxidative metabolism, J Immunol, 153, 2146, 10.4049/jimmunol.153.5.2146

10.1016/0167-4889(93)90079-5

10.1042/bj3120555

10.4049/jimmunol.169.9.4697

Hayek MG, 1997, Enhanced expression of inducible cyclooxygenase with age in murine macrophages, J Immunol, 159, 2445, 10.4049/jimmunol.159.5.2445

10.1152/ajpcell.1998.275.3.C661

10.1016/0531-5565(95)02033-0

10.1016/S0531-5565(99)00065-0

10.1016/j.mad.2003.11.010

10.1016/j.exger.2004.07.001

10.1016/0047-6374(96)01704-6

10.1016/S0954-6111(99)90103-8

Wang CQ, 1995, Effect of age on marrow macrophage number and function, Aging (Milano), 7, 379

10.1016/S0047-6374(97)01871-X

Timm JA, 1999, Maturation of CD4+ lymphocytes in the aged microenvironment results in a memory‐enriched population, J Immunol, 162, 711, 10.4049/jimmunol.162.2.711

Stephan RP, 1997, Development of B cells in aged mice: decline in the ability of pro‐B cells to respond to IL‐7 but not to other growth factors, J Immunol, 158, 1598, 10.4049/jimmunol.158.4.1598

10.1016/S0047-6374(99)00078-0

10.1210/jc.83.6.2043

10.1182/blood.V91.1.75

10.1016/j.arr.2003.08.002

10.4049/jimmunol.171.11.5975

10.1016/S0264-410X(99)00494-6

10.1128/iai.64.10.4288-4298.1996

10.1159/000026365

10.1016/S0531-5565(00)00118-2

10.1074/jbc.273.49.32833

10.1093/intimm/9.10.1581

10.1016/S0960-5428(97)00031-9

10.2741/A183

10.1002/eji.1830260216

Cox GW, 1992, Tumor necrosis factor‐alpha‐dependent production of reactive nitrogen intermediates mediates IFN‐gamma plus IL‐2‐induced murine macrophage tumoricidal activity, J Immunol, 149, 3290, 10.4049/jimmunol.149.10.3290

Leenen PJM, 1994, TNF‐α and IFN‐γ stimulate a macrophage precursor cell line to kill Listeria monocytogenes in a nitric oxide‐independent manner, J Immunol, 153, 5141, 10.4049/jimmunol.153.11.5141

10.1073/pnas.92.5.1614

10.1146/annurev.immunol.16.1.421

Luxembourg AT, 1994, Modulation of signaling via the B cell antigen receptor by CD21, the receptor for C3dg and EBV, J Immunol, 153, 4448, 10.4049/jimmunol.153.10.4448

Aubry JP, 1997, The 25‐kDa soluble CD23 activates type III constitutive nitric oxide synthase activity via CD11b and CD11c expressed by human monocytes, J Immunol, 159, 614, 10.4049/jimmunol.159.2.614

10.1210/endo.137.11.8895324