Bioinformatic analysis of autism positional candidate genes using biological databases and computational gene network prediction

Genes, Brain and Behavior - Tập 2 Số 5 - Trang 303-320 - 2003
Amanda L Yonan1,2, Abraham A. Palmer1, Kenneth Smith1, Igor Feldman1,3, H. K. Lee1, J. Yonan4, Stuart G. Fischer1, Paul Pavlidis1,3, T. Conrad Gilliam1,2,5
1Columbia Genome Center, Columbia University, New York
2Department of Genetics and Development, Columbia University, New York
3Department of Biomedical Informatics, Columbia University, New York, USA
4Division of Molecular Genetics, Departments of Pediatrics and Medicine, Columbia University, New York,
5Department of Psychiatry, Columbia University and New York State Psychiatric Institute, New York

Tóm tắt

Common genetic disorders are believed to arise from the combined effects of multiple inherited genetic variants acting in concert with environmental factors, such that any given DNA sequence variant may have only a marginal effect on disease outcome. As a consequence, the correlation between disease status and any given DNA marker allele in a genomewide linkage study tends to be relatively weak and the implicated regions typically encompass hundreds of positional candidate genes. Therefore, new strategies are needed to parse relatively large sets of ‘positional’ candidate genes in search of actual disease‐related gene variants. Here we use biological databases to identify 383 positional candidate genes predicted by genomewide genetic linkage analysis of a large set of families, each with two or more members diagnosed with autism, or autism spectrum disorder (ASD). Next, we seek to identify a subset of biologically meaningful, high priority candidates. The strategy is to select autism candidate genes based on prior genetic evidence from the allelic association literature to query the known transcripts within the 1‐LOD (logarithm of the odds) support interval for each region. We use recently developed bioinformatic programs that automatically search the biological literature to predict pathways of interacting genes (pathwayassist and geneways). To identify gene regulatory networks, we search for coexpression between candidate genes and positional candidates. The studies are intended both to inform studies of autism, and to illustrate and explore the increasing potential of bioinformatic approaches as a compliment to linkage analysis.

Từ khóa


Tài liệu tham khảo

10.1016/S0092-8674(00)81904-2

10.1086/324069

10.1086/342720

10.1093/nar/gkg056

10.1017/S0033291700028099

10.1002/bies.10260

10.1038/sj.mp.4000998

10.1016/S1367-5931(00)00173-3

10.1038/sj.mp.4000923

10.1002/ajmg.1613

10.1038/sj.mp.4001004

10.1038/ng1090

10.1007/s100480000104

10.1038/84792

10.1038/sj.mp.4001011

10.1086/320588

10.1038/ng998

10.1001/jama.285.24.3093

10.1007/s00787-002-0297-8

10.1016/S0896-6273(03)00501-4

CLSA (Collaborative Linkage Study of Autism, 1999, An autosomal genomic screen for autism, Am J Med Genet, 88, 609, 10.1002/(SICI)1096-8628(19991215)88:6<609::AID-AJMG7>3.0.CO;2-L

10.1097/00008480-199608000-00008

10.1038/6002

10.1073/pnas.95.25.14863

10.1038/35015694

10.1038/35078107

10.1016/S0736-5748(02)00046-1

10.1111/j.1469-7610.1977.tb00443.x

10.1001/jama.289.1.87

10.1093/bioinformatics/17.suppl_1.S74

10.1038/ng776

10.1111/j.1600-0447.1999.tb00984.x

10.1007/s002130000573

10.1093/bioinformatics/17.suppl_1.S97

10.1002/(SICI)1096-8628(19980630)78:2<173::AID-AJMG15>3.0.CO;2-K

10.1002/ajmg.1320600404

10.1038/415180a

10.1086/375613

10.1159/000057987

10.1038/79876

10.2337/diabetes.52.4.1052

10.1126/science.292.5518.929

10.1093/hmg/7.3.571

10.1086/323264

10.1093/hmg/10.9.973

10.1038/sj.mp.4000979

Ju W., 2000, An epidemiology and molecular genetic study on breast cancer susceptibility, Chin Med Sci J, 15, 231

10.1038/sj.mp.4001033

10.1002/ajmg.10238

10.1038/sj.mp.4001125

10.1007/s004390050495

10.1093/bioinformatics/18.suppl_1.S249

10.1016/S0378-1119(00)00431-5

10.1038/sj.mp.4001071

10.1093/hmg/9.6.861

10.1038/ng1195-241

10.1111/j.1365-294X.2006.03221.x

10.1034/j.1600-0447.2001.00086.x

10.1086/321980

10.1038/418038a

10.1002/ajmg.10182

10.3109/01677060109167380

10.1038/nature750

10.1002/ajmg.b.10012

10.1006/geno.2001.6617

10.1086/303029

10.1086/375403

10.1038/35079114

10.1002/(SICI)1096-8628(20000207)96:1<123::AID-AJMG24>3.0.CO;2-N

10.1002/1096-8628(20001204)96:6<784::AID-AJMG18>3.0.CO;2-7

10.1097/00041444-200106000-00008

10.1038/sj.mp.4001069

10.1016/0006-3223(96)85270-X

10.1002/ajmg.10041

10.1093/hmg/8.5.805

10.1002/ajmg.1432

10.1046/j.1440-1754.2003.00097.x

10.1126/science.2475911

10.1086/302497

10.1126/science.2772657

10.1023/A:1005113900068

10.1093/bioinformatics/16.12.1120

10.1073/pnas.97.20.11038

10.1136/jmg.40.4.e42

10.1002/ajmg.10153

10.1086/515485

10.1001/archpsyc.1988.01800340081013

10.1007/BF02408429

10.1023/A:1026096203946

10.1136/jmg.39.11.e70

Tempeton A.R., 2000, Epistasis and the Evolutionary Process, 41

10.1126/science.1065810

10.1016/S0304-3940(02)01338-1

10.1016/0165-5728(96)00052-5

10.1002/ajmg.1401

10.1038/79866

10.1001/jama.289.1.49

10.1086/378778

Zar J.H., 1999, Biostatistical Analysis

10.1038/sj.mp.4001124

10.1002/cne.1406

10.1136/jmg.40.1.e4