Local critical stress correlates better than global maximum stress with plaque morphological features linked to atherosclerotic plaque vulnerability: an in vivo multi-patient study

Springer Science and Business Media LLC - Tập 8 - Trang 1-9 - 2009
Dalin Tang1, Zhongzhao Teng1, Gador Canton2, Thomas S Hatsukami3, Li Dong2, Xueying Huang1, Chun Yuan2
1Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, USA
2Department of Radiology, University of Washington, Seattle, USA
3Division of Vascular Surgery, University of Washington, Seattle, USA

Tóm tắt

It is believed that mechanical stresses play an important role in atherosclerotic plaque rupture process and may be used for better plaque vulnerability assessment and rupture risk predictions. Image-based plaque models have been introduced in recent years to perform mechanical stress analysis and identify critical stress indicators which may be linked to rupture risk. However, large-scale studies based on in vivo patient data combining mechanical stress analysis, plaque morphology and composition for carotid plaque vulnerability assessment are lacking in the current literature. 206 slices of in vivo magnetic resonance image (MRI) of carotid atherosclerotic plaques from 20 patients (age: 49–71, mean: 67.4; all male) were acquired for model construction. Modified Mooney-Rivlin models were used for vessel wall and all plaque components with parameter values chosen to match available data. A morphological plaque severity index (MPSI) was introduced based on in vivo plaque morphological characteristics known to correlate with plaque vulnerability. Critical stress, defined as the maximum of maximum- principal-stress (Stress-P1) values from all possible vulnerable sites, was determined for each slice for analysis. A computational plaque stress index (CPSI, with 5 grades 0–4, 4 being most vulnerable) was defined for each slice using its critical stress value and stress interval for each CPSI grade was optimized to reach best agreement with MPSI. Correlations between CPSI and MPSI, plaque cap thickness, and lipid core size were analyzed. Critical stress values correlated positively with lipid core size (r = 0.3879) and negatively with cap thickness (r = -0.3953). CPSI classifications had 71.4% agreement with MPSI classifications. The Pearson correlation coefficient between CPSI and MPSI was 0.849 (p < 0.0001). Using global maximum Stress-P1 value for each slice to define a global maximum stress-based CPSI (G-CPSI), the agreement rate with MPSI was only 34.0%. The Pearson correlation coefficient between G-CPSI and MPSI was 0.209. Results from this in vivo study demonstrated that localized critical stress values had much better correlation with plaque morphological features known to be linked to plaque rupture risk, compared to global maximum stress conditions. Critical stress indicators have the potential to improve image-based screening and plaque vulnerability assessment schemes.

Tài liệu tham khảo

Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Juhani Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 2003,108(14):1664–72. 10.1161/01.CIR.0000087480.94275.97 Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Juhani Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT: From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 2003,108(15):1772–8. 10.1161/01.CIR.0000087481.55887.C9 Fuster V: The Vulnerable Atherosclerotic Plaque: Understanding, Identification, and Modification. Edited by: Fuster V, Cornhill JF, Dinsmore RE, Fallon JT, Insull W, Libby P, Nissen S, Rosenfeld ME, Wagner WD. AHA Monograph Series. Armonk, NY: Futura Publishing; 1998. Yuan C, Mitsumori LM, Beach KW, Maravilla KR: Special review: Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology 2001, 221: 285–99. 10.1148/radiol.2212001612 Saam T, Ferguson MS, Yarnykh VL, Takaya N, Xu D, Polissar NL, Hatsukami TS, Yuan C: Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol 2005,25(1):234–9. Yuan C, Mitsumori LM, Ferguson MS, Polissar NL, Echelard DE, Ortiz G, Small R, Davies JW, Kerwin WS, Hatsukami TS: In vivo accuracy of multispectral MR imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 2001, 104: 2051–2056. 10.1161/hc4201.097839 Chandran KB, Mun JH, Choi KK, Chen JS, Hamilton A, Nagaraj A, McPherson DD: A method for in-vivo analysis for regional arterial wall material property alterations with atherosclerosis: preliminary results. Medical Engineering & Physics 2003, 25: 289–298. 10.1016/S1350-4533(02)00224-2 Pedersen PC, Chakareski J, Lara-Montalvo R: Ultrasound characterization of arterial wall structures based on integrated backscatter profiles. Proc for the 2003 SPIE Med Imaging Symposium, San Diego 2003, 115–126. Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C: Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 2002, 106: 1368–1373. 10.1161/01.CIR.0000028591.44554.F9 Holzapfel GA, Stadler M, Schulze-Bause CAJ: A layer-specific three-dimensional model for the simulation of balloon angioplasty using Magnetic Resonance Imaging and mechanical testing. Ann Biomed Eng 2002,30(6):753–767. 10.1114/1.1492812 Steinman DA: Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann Biomed Eng 2002,30(4):483–97. 10.1114/1.1467679 Tang D, Yang C, Zheng J, Woodard PK, Saffitz JE, Petruccelli JD, Sicard GA, Yuan C: Local maximal stress hypothesis and computational plaque vulnerability index for atherosclerotic plaque assessment. Ann Biomed Eng 2005,33(12):1789–1801. 10.1007/s10439-005-8267-1 Tang D, Yang C, Mondal S, Liu F, Canton G, Hatsukami TS, Yuan C: A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-Based 2D/3D FSI models. J Biomechanics 2008,41(4):727–736. 10.1016/j.jbiomech.2007.11.026 Tang D, Yang C, Kobayashi S, Ku DN: Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3D FSI models. J Biomechanical Engineering 2004, 126: 363–370. 10.1115/1.1762898 Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE, Yuan C: 3D MRI-based multi-component FSI models for atherosclerotic plaques: a 3-D FSI model. Annals of Biomedical Engineering 2004,32(7):947–960. 10.1023/B:ABME.0000032457.10191.e0 Vengrenyuk Y, Carlier S, Xanthos S, Cardoso L, Ganatos P, Virmani R, Einav S, Gilchrist L, Weinbaum S: A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci USA 2006,103(40):14678–83. 10.1073/pnas.0606310103 Bluestein D, Alemu Y, Avrahami I, Gharib M, Dumont K, Ricotta JJ, Einav S: Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J Biomech 2008,41(5):1111–1118. 10.1016/j.jbiomech.2007.11.029 Kaazempur-Mofrad MR, Isasi AG, Younis HF, Chan RC, Hinton DP, Sukhova G, Lamuraglia GM, Lee RT, Kamm RD: Characterization of the atherosclerotic carotid bifurcation using MRI, finite element modeling, and histology. Annals of Biomedical Engineering 2004,32(7):932–946. 10.1023/B:ABME.0000032456.16097.e0 Li ZY, Howarth SP, Tang T, Graves MJ, U-King-Im J, Trivedi RA, Kirkpatrick PJ, Gillard JH: Structural analysis and magnetic resonance imaging predict plaque vulnerability: a study comparing symptomatic and asymptomatic individuals. J Vasc Surg 2007,45(4):768–75. 10.1016/j.jvs.2006.12.065 Long Q, Xu XY, Ariff B, Thom SA, Hughes AD, Stanton AV: Reconstruction of blood flow patterns in a human carotid bifurcation: A combined CFD and MRI study. J Magn Reson Imaging 2000, 11: 299–311. 10.1002/(SICI)1522-2586(200003)11:3<299::AID-JMRI9>3.0.CO;2-M Groen HC, Gijsen FJ, Lugt A, Ferguson MS, Hatsukami TS, Steen AF, Yuan C, Wentzel JJ: Plaque rupture in the carotid artery is localized at the high shear stress region: a case report. Stroke 2007, 38: 2379–2381. 10.1161/STROKEAHA.107.484766 Loree HM, Kamm RD, Stringfellow RG, Lee RT: Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 1992, 71: 850–8. Williamson SD, Lam Y, Younis HF, Huang H, Patel S, Kaazempur-Mofrad MR, Kamm RD: On the sensitivity of wall stresses in diseased arteries to variable material properties. J Biomechanical Engineering 2003, 125: 147–155. 10.1115/1.1537736 Yang C, Tang D, Yuan C, Hatsukami TS, Zheng J, Woodard PK: In vivo / ex vivo MRI-based 3D models with fluid-structure interactions for human atherosclerotic plaques compared with fluid/wall-only models. CMES: Computer Modeling in Engineering and Sciences 2007,19(3):233–245. Kerwin W, Xu D, Liu F, Saam T, Underhill H, Takaya N, Chu B, Hatsukami T, Yuan C: Magnetic resonance imaging of carotid atherosclerosis: Plaque analysis. Topics in Magnetic Resonance Imaging 2007, 18: 371–378. 10.1097/rmr.0b013e3181598d9d Bathe KJ: Theory and Modeling Guide. Vol I: ADINA; Vol II: ADINA-F, ADINA R&D, Inc., Watertown, MA; 2002.