Focal Epileptogenesis in a Rat Model of Polymicrogyria

Journal of Neurophysiology - Tập 81 Số 1 - Trang 159-173 - 1999
Kimberle M. Jacobs1, Bryan J. Hwang1, David A. Prince1
1Department of Neurology and Neurological Sciences, Stanford University Medical Center, Stanford, California, 94305

Tóm tắt

Jacobs, Kimberle M., Bryan J. Hwang, and David A. Prince. Focal epileptogenesis in a rat model of polymicrogyria. J. Neurophysiol. 81: 159–173, 1999. Polymicrogyria, a developmental cortical malformation associated with epilepsy, can be modeled in rats with a transcortical freeze lesion on the day of birth (P0) or P1. We have used field potential recordings to characterize the incidence, propagation patterns, and distribution of epileptiform activity in slices from rats with experimental microgyri. Interictal-like epileptiform activity was evoked in slices from 85% of freeze-lesioned rats aged P12–P118. These data show age-specific properties of epileptogenesis, including: a delay in onset, a decrease in the incidence of epileptiform activity in rats >P40 that was specific to those lesioned on P0 as opposed to P1, and a shift in the likely site of initiation to areas further from the microgyrus in mature animals. Several observations suggest that the area adjacent to the microgyrus, which appears histologically normal in Nissl stains, contains the necessary epileptogenic neuronal circuits: 1) in 78% of slices, epileptiform activity could be evoked only from a focal zone adjacent to the microgyrus (paramicrogyral zone) and not within the microgyrus proper; 2) epileptiform activity consistently originated from a particular site within this paramicrogyral zone, independent of the location of the stimulating electrode, suggesting that the generator is outside of the microgyrus; 3) evoked epileptiform activities in the paramicrogyral cortex were unaltered after separation of this zone from the microgyrus with a transcortical cut; and 4) the short-latency graded field potential evoked in the paramicrogyral zone contained an additional negativity not seen in control slices. The epileptiform activity was blocked reversibly by N-methyl-d-aspartate receptor antagonists in slices from mature as well as immature freeze-lesioned rats. These results suggest that aberrant synaptic connectivity develops in rat cortex surrounding the microgyrus and produces a focal epileptogenic zone whose capacity to generate epileptiform activities does not depend on connections with the malformation itself. We hypothesize that afferents, originating from cortical and extracortical sites, lose their targets in the region of the malformation and make appropriate laminar contacts in the cortex adjacent to the malformation, creating an overabundance of excitatory input to this cortical zone. Increased excitatory feedback onto specific cortical elements may be one factor involved in epileptogenesis in this model of a cortical malformation.

Từ khóa


Tài liệu tham khảo

10.1093/cercor/6.6.751

10.1093/cercor/3.1.26

10.1016/0920-1211(95)00045-3

Barkovich A. J., 1992, Am. J. Neuroradiol., 13, 423

Barkovich A. J., 1992, Am. J. Neuroradiol., 13, 95

Barkovich A. J., 1995, Am. J. Neuroradiol., 16, 822

10.1016/0166-2236(93)90107-W

10.1016/S1059-1311(05)80175-X

10.1073/pnas.94.13.7030

10.1152/jn.1989.61.4.747

10.1152/jn.1989.62.5.1149

10.1002/cne.902960407

10.1002/cne.901900113

10.1111/j.1469-8749.1994.tb11839.x

10.1038/310685a0

10.1002/path.1700640308

10.1152/jn.1969.32.5.663

10.1016/0013-4694(62)90116-5

10.1007/BF00688066

10.1007/BF00691477

Eayrs J. T., 1959, J. Anat., 93, 385

10.1016/0306-4522(93)90058-N

10.1016/0896-6273(90)90172-C

10.1016/0304-3940(93)90551-U

10.1055/s-2008-1041201

10.1016/S0046-8177(75)80042-6

10.1152/jn.1982.48.6.1321

10.1152/jn.1987.58.5.1052

10.1111/j.1528-1157.1975.tb04721.x

10.1016/0165-3806(94)00196-7

10.1002/ana.410280602

10.1097/00005072-199103000-00006

10.1093/cercor/6.3.514

Jacobs K. M., 1996, Soc. Neurosci. Abstr., 22, 2102

Jacobs K. M., 1997, Soc. Neurosci. Abstr., 23, 811

10.1016/0006-8993(92)90356-E

10.1212/WNL.43.11.2322

10.1016/0014-4886(72)90174-4

10.1177/088307389400900418

10.1007/BF00684769

10.1016/0165-3806(90)90152-O

10.1016/0304-3940(90)90353-B

10.1152/jn.1991.65.2.247

10.1016/S0920-1211(96)00041-1

10.1016/0304-3940(93)90195-Q

10.1007/BF00685375

10.1038/nm0997-990

10.1007/BF01262658

10.1016/S0006-8993(86)80236-0

10.1097/00005072-199503000-00001

10.1007/BF00235560

10.1016/0896-6273(94)90210-0

10.1016/0896-6273(91)90176-Z

10.1016/0959-4388(92)90165-H

10.1016/0896-6273(93)90049-W

10.1016/0006-8993(85)90661-4

10.1523/JNEUROSCI.15-02-01341.1995

10.1002/ana.410300603

10.1002/ana.410370410

10.1139/y97-036

10.1152/jn.1993.69.4.1276

10.1093/brain/118.3.629

10.1097/00005072-197407000-00004

Rosen G. D., 1996, Soc. Neurosci. Abstr., 22, 485

10.3109/00207458908987438

10.1523/JNEUROSCI.15-12-08234.1995

10.1016/S0304-3940(98)00258-4

10.1038/368144a0

10.1016/0742-8413(92)90228-Y

10.1111/j.1528-1157.1996.tb00027.x

10.1136/jnnp.34.4.369

10.1126/science.7079735

Truwit C. L., 1992, Am. J. Neuroradiol., 13, 67

10.1007/BF00305096

10.1016/0165-0270(88)90056-8

10.1016/0920-9964(95)00013-C

10.1007/BF00685371

10.1016/0306-4522(79)90157-X

Wisniewski K. E., 1990, Am. J. Med. Genet., 7, 274

10.1016/0920-1211(90)90051-V