A Bayesian framework to estimate diversification rates and their variation through time and space

Springer Science and Business Media LLC - Tập 11 - Trang 1-15 - 2011
Daniele Silvestro1,2,3, Jan Schnitzler1,2, Georg Zizka1,2,3
1Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
2Department of Botany and Molecular Evolution, Senckenberg Research Institute, Frankfurt am Main, Germany
3Diversity and Evolution of Higher Plants, Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany

Tóm tắt

Patterns of species diversity are the result of speciation and extinction processes, and molecular phylogenetic data can provide valuable information to derive their variability through time and across clades. Bayesian Markov chain Monte Carlo methods offer a promising framework to incorporate phylogenetic uncertainty when estimating rates of diversification. We introduce a new approach to estimate diversification rates in a Bayesian framework over a distribution of trees under various constant and variable rate birth-death and pure-birth models, and test it on simulated phylogenies. Furthermore, speciation and extinction rates and their posterior credibility intervals can be estimated while accounting for non-random taxon sampling. The framework is particularly suitable for hypothesis testing using Bayes factors, as we demonstrate analyzing dated phylogenies of Chondrostoma (Cyprinidae) and Lupinus (Fabaceae). In addition, we develop a model that extends the rate estimation to a meta-analysis framework in which different data sets are combined in a single analysis to detect general temporal and spatial trends in diversification. Our approach provides a flexible framework for the estimation of diversification parameters and hypothesis testing while simultaneously accounting for uncertainties in the divergence times and incomplete taxon sampling.

Tài liệu tham khảo

Nee S, Mooers AØ, Harvey PH: Tempo and mode of evolution revealed from molecular phylogenies. Proc Natl Acad Sci USA. 1992, 89 (17): 8322-8326. 10.1073/pnas.89.17.8322. Sanderson MJ, Donoghue MJ: Reconstructing shifts in diversification rates on phylogenetic trees. Trends Ecol Evol. 1996, 11 (1): 15-20. 10.1016/0169-5347(96)81059-7. Barraclough TG, Nee S: Phylogenetics and speciation. Trends Ecol Evol. 2001, 16 (7): 391-399. 10.1016/S0169-5347(01)02161-9. Ricklefs RE: Estimating diversification rates from phylogenetic information. Trends Ecol Evol. 2007, 22 (11): 601-610. 10.1016/j.tree.2007.06.013. Jablonski D, Roy K, Valentine JW, Price RM, Anderson PS: The impact of the pull of the recent on the history of marine diversity. Science. 2003, 300 (5622): 1133-1135. 10.1126/science.1083246. Jaramillo C, Rueda MJ, Mora G: Cenozoic plant diversity in the Neotropics. Science. 2006, 311 (5769): 1893-1896. 10.1126/science.1121380. Nee S, Holmes EC, May RM, Harvey PH: Extinction rates can be estimated from molecular phylogenies. Phil Trans R Soc B. 1994, 344 (1307): 77-82. 10.1098/rstb.1994.0054. Rabosky DL, Lovette IJ: Explosive evolutionary radiations: Decreasing speciation or increasing extinction through time?. Evolution. 2008, 62 (8): 1866-1875. 10.1111/j.1558-5646.2008.00409.x. Nee S, May RM, Harvey PH: The reconstructed evolutionary process. Phil Trans R Soc B. 1994, 344: 305-311. 10.1098/rstb.1994.0068. Magallón S, Sanderson MJ: Absolute diversification rates in angiosperm clades. Evolution. 2001, 55 (9): 1762-1780. Ricklefs RE: Global variation in the diversification rate of passerine birds. Ecology. 2006, 87 (10): 2468-2478. 10.1890/0012-9658(2006)87[2468:GVITDR]2.0.CO;2. Rabosky DL: Likelihood methods for detecting temporal shifts in diversification rates. Evolution. 2006, 60 (6): 1152-1164. Morlon H, Potts MD, Plotkin JB: Inferring the dynamics of diversification: a coalescent approach. PLoS Biol. 2010, 8 (9): e1000493-10.1371/journal.pbio.1000493. Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, Carnevale G, Harmon LJ: Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci USA. 2009, 106 (32): 13410-13414. 10.1073/pnas.0811087106. Baldwin BG, Sanderson MJ: Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc Natl Acad Sci USA. 1998, 95 (16): 9402-9406. 10.1073/pnas.95.16.9402. Hughes C, Eastwood R: Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci USA. 2006, 103 (27): 10334-10339. 10.1073/pnas.0601928103. Valente LM, Savolainen V, Vargas P: Unparalleled rates of species diversification in Europe. Proc R Soc Lond B. 2010, 277 (1687): 1489-1496. 10.1098/rspb.2009.2163. Day JJ, Cotton JA, Barraclough TG: Tempo and mode of diversification of lake Tanganyika cichlid fishes. PLoS ONE. 2008, 3 (3): e1730-10.1371/journal.pone.0001730. Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A: The delayed rise of present-day mammals. Nature. 2007, 446: 507-512. 10.1038/nature05634. Magallón S, Castillo A: Angiosperm diversification through time. Am J Bot. 2009, 96 (1): 349-365. 10.3732/ajb.0800060. Phillimore AB, Freckleton RP, Orme CDL, Owens IPF: Ecology predicts large-scale patterns of phylogenetic diversification in birds. Am Nat. 2006, 168 (2): 220-229. 10.1086/505763. Linder HP: Plant species radiations: where, when, why?. Phil Trans R Soc B. 2008, 363: 3097-3105. 10.1098/rstb.2008.0075. Valente L, Reeves G, Schnitzler J, Pizer Mazon I, Fay M, Rebelo T, Chase M, Barraclough T: Diversification of the African genus Protea in the Cape biodiversity hotspot and beyond: equal rates but different spatial scales. Evolution. 2010, 64 (3): 745-760. 10.1111/j.1558-5646.2009.00856.x. Rabosky DL: Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecol Lett. 2009, 12 (8): 735-743. 10.1111/j.1461-0248.2009.01333.x. Ree RH: Detecting the historical signature of key innovations using stochastic models of character evolution and cladogenesis. Evolution. 2005, 59 (2): 257-265. Hodges SA, Arnold ML: Spurring plant diversification: Are floral nectar spurs a key innovation?. Proc R Soc Lond B. 1995, 262: 343-348. 10.1098/rspb.1995.0215. Maddison WP, Midford PE, Otto SP: Estimating a binary character's effect on speciation and extinction. Syst Biol. 2007, 56 (5): 701-710. 10.1080/10635150701607033. Moore BR, Donoghue MJ: A Bayesian approach for evaluating the impact of historical events on rates of diversification. Proc Natl Acad Sci USA. 2009, 106 (11): 4307-4312. 10.1073/pnas.0807230106. Kendall DG: On the generalized birth-and-death process. Ann Math Stat. 1948, 19 (1): 1-15. 10.1214/aoms/1177730285. Stadler T: Mammalian phylogeny reveals recent diversification rate shifts. Proc Natl Acad Sci USA. 2011, 108 (15): 6187-6192. 10.1073/pnas.1016876108. Rabosky DL: Extinction rates should not be estimated from molecular phylogenies. Evolution. 2010, 64 (6): 1816-1824. 10.1111/j.1558-5646.2009.00926.x. Bokma F: Bayesian estimation of speciation and extinction probabilities from (in)complete phylogenies. Evolution. 2008, 62 (9): 2441-2445. 10.1111/j.1558-5646.2008.00455.x. Yang Z, Rannala B: Bayesian phylogenetic inference using DNA sequences: A Markov chain Monte Carlo method. Mol Biol Evol. 1997, 14 (7): 717-724. Stadler T: On incomplete sampling under birth-death models and connections to the sampling-based coalescent. J Theor Biol. 2009, 261 (1): 58-66. 10.1016/j.jtbi.2009.07.018. Höhna S, Stadler T, Ronquist F, Britton T: Inferring speciation and extinction rates under different species sampling schemes. Mol Biol Evol. 2011, 28 (9): 2577-2589. 10.1093/molbev/msr095. Gelman A, Meng X-L: Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Statistical Science. 1998, 13 (2): 163-185. Lartillot N, Philippe H: Computing Bayes factors using thermodynamic integration. Syst Biol. 2006, 55 (2): 195-207. 10.1080/10635150500433722. Ogata Y: A Monte-Carlo method for high dimensional integration. Numer Math. 1989, 55 (2): 137-157. 10.1007/BF01406511. Gante HF, Santos CD, Alves MJ: Phylogenetic relationships of the newly described species Chondrostoma olisiponensis (Teleostei: Cyprinidae). J Fish Biol. 2010, 76 (4): 965-974. 10.1111/j.1095-8649.2010.02536.x. Bianco PG: Potential role of the palaeohistory of the Mediterranean and Paratethis basins on the early dispersal of Euro-Mediterranean freshwater Wshes. Ichthyol Explor Freshwaters. 1990, 1: 167-184. Bănărescu P: Zoogeography of fresh waters. Volume 2: distribution and dispersal of freshwater animals in North America and Eurasia. 1991, Wiesbaden: AULA-Verlag Robalo JI, Almada VC, Levy A, Doadrio I: Re-examination and phylogeny of the genus Chondrostoma based on mitochondrial and nuclear data and the definition of 5 new genera. Mol Phylogenet Evol. 2007, 42 (2): 362-372. 10.1016/j.ympev.2006.07.003. Linder HP: The radiation of the Cape flora, southern Africa. Biol Rev (Camb). 2003, 78: 597-638. Schnitzler J, Barraclough TG, Boatwright JS, Goldblatt P, Manning JC, Powell MP, Rebelo T, Savolainen V: Causes of plant diversification in the Cape biodiversity hotspot of South Africa. Syst Biol. 2011, 60 (3): 343-357. 10.1093/sysbio/syr006. Python Core Development Team: Python programming language v.2.6.4. 2010, [http://www.python.org/] Ascher D, Dubois PF, Hinsen K, Hugunin J, Oliphant T: Numerical Python. UCRL-MA-128569. 2001, Livermore, CA 94566: Lawrence Livermore National Laboratory Jones E, Oliphant T, Peterson P: SciPy: Open source scientific tools for Python. 2001, [http://www.scipy.org] R Development Core Team: R: A language and environment for statistical computing v.2.13.1. 2011, R Foundation for Statistical Computing, [http://www.R-project.org/] Gautier L: rpy2: A simple and efficient access to R from Python. 2008, [http://rpy.sourceforge.net/] Rambaut A, Drummond AJ: Tracer v.1.5. 2007, [http://beast.bio.ed.ac.uk/Tracer] Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007, 7: 214-10.1186/1471-2148-7-214. Yang ZH: PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007, 24 (8): 1586-1591. 10.1093/molbev/msm088. Gernhard T: The conditioned reconstructed process. J Theor Biol. 2008, 253 (4): 769-778. 10.1016/j.jtbi.2008.04.005. Yang ZH, Rannala B: Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol. 2006, 23 (1): 212-226. Thorne JL, Kishino H: Divergence time and evolutionary rate estimation with multilocus data. Syst Biol. 2002, 51 (5): 689-702. 10.1080/10635150290102456. Lepage T, Bryant D, Philippe H, Lartillot N: A general comparison of relaxed molecular clock models. Mol Biol Evol. 2007, 24 (12): 2669-2680. 10.1093/molbev/msm193. Thorne JL, Kishino H, Painter IS: Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol. 1998, 15 (12): 1647-1657. Lartillot N, Philippe H: A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol. 2004, 21 (6): 1095-1109. 10.1093/molbev/msh112. Kubo T, Iwasa Y: Inferring the rates of branching and extinction from molecular phylogenies. Evolution. 1995, 49 (4): 694-704. 10.2307/2410323. Paradis E: Can extinction rates be estimated without fossils?. J Theor Biol. 2004, 229 (1): 19-30. 10.1016/j.jtbi.2004.02.018. Rabosky DL: Primary controls on species richness in higher taxa. Syst Biol. 2010, 59 (6): 634-645. 10.1093/sysbio/syq060. Hastings WK: Monte Carlo sampling methods using Markov chains and their applications. Biometrika. 1970, 57 (1): 97-109. 10.1093/biomet/57.1.97. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AW, Teller E: Equations of state calculations by fast computing machines. J Chem Phys. 1953, 21 (6): 1087-1091. 10.1063/1.1699114. Jeffreys H: Some tests of significance, treated by the theory of probability. P Camb Philos Soc. 1935, 31 (2): 203-222. 10.1017/S030500410001330X. Kass RE, Raftery AE: Bayes Factors. J Amer Stat Assoc. 1995, 90 (430): 773-795. 10.2307/2291091. Newton MA, Raftery AE: Approximate Bayesian inference with weighted likelihood bootstrap. J Roy Stat Soc B. 1994, 56 (1): 3-48. Nylander JAA, Ronquist F, Huelsenbeck J, Nieves-Aldrey JL: Bayesian phylogenetic analysis of combined data. Syst Biol. 2004, 53 (1): 47-67. 10.1080/10635150490264699. Pagel M, Meade A: Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am Nat. 2006, 167 (6): 808-825. 10.1086/503444. Rodrigue N, Aris-Brosou S: Fast Bayesian choice of phylogenetic models: Prospecting data augmentation-based thermodynamic integration. Syst Biol. 2011 Fan Y, Wu R, Chen M, Kuo L, Lewis P: Choosing among partition models in Bayesian phylogenetics. Mol Biol Evol. 2011, 28 (1): 523-532. 10.1093/molbev/msq224. Xie W, Lewis PO, Fan Y, Kuo L, Chen M-H: Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst Biol. 2011, 60 (2): 150-160. 10.1093/sysbio/syq085. Beerli P, Palczewski M: Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics. 2010, 185 (1): 313-326. 10.1534/genetics.109.112532. Hartmann K, Wong D, Stadler T: Sampling trees from evolutionary models. Syst Biol. 2010, 59 (4): 465-476. 10.1093/sysbio/syq026. Bokma F: Problems detecting density-dependent diversification on phylogenies. Proc R Soc Lond B. 2009, 276 (1659): 993-994. 10.1098/rspb.2008.1249. Rabosky DL, Lovette IJ: Problems detecting density-dependent diversification on phylogenies: reply to Bokma. Proc R Soc Lond B. 2009, 276 (1659): 995-997. 10.1098/rspb.2008.1584. Rambaut A: Phyl-O-Gen. Phylogenetic Tree Simulator Package v.1.1. 2002, University of Oxford, [http://tree.bio.ed.ac.uk] Rambaut A, Grassly NC: Seq-Gen: An application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic frees. Comput Appl Biosci. 1997, 13 (3): 235-238. Rabosky DL: LASER: A maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evol Bioinform Online. 2006, 2: 257-260.