A strategy for oligonucleotide microarray probe reduction
Tóm tắt
One of the factors limiting the number of genes that can be analyzed on high-density oligonucleotide arrays is that each transcript is probed by multiple oligonucleotide probes. To reduce the number of probes required for each gene, a systematic approach to choosing the most representative probes is needed. A method is presented for reducing the number of probes per gene while maximizing the fidelity to the original array design. The methodology has been tested on a dataset comprising 317 Affymetrix HuGeneFL GeneChips. The performance of the original and reduced probe sets was compared in four cancer-classification problems. The results of these comparisons show that reduction of the probe set by 95% does not dramatically affect performance, and thus illustrate the feasibility of substantially reducing probe numbers without significantly compromising sensitivity and specificity of detection. The strategy described here is potentially useful for designing small, limited-probe genome-wide arrays for screening applications.
Tài liệu tham khảo
Schena M, Shalon D, Davis RW, Brown PO: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995, 270: 467-470.
Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL: Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol. 1996, 14: 1675-1680.
Schadt EE, Li C, Ellis B, Wong WH: Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. J Cell Biochem Suppl. 2001, 120-125. 10.1002/jcb.10073. Suppl(37)
Affymetrix, Statistical Algorithms Reference Guide. 2001, [http://www.affymetrix.com/support/technical/technotes/statistical_reference_guide.pdf]
Whitehead Institute, Center for Genome Research - Cancer Genomics Publications/Projects. [http://www-genome.wi.mit.edu/cancer/pubs/feature_reduction]
Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, et al: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999, 286: 531-537. 10.1126/science.286.5439.531.
Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, Reich M, Pinkus GS, et al: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002, 8: 68-74. 10.1038/nm0102-68.
Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JY, Goumnerova LC, Black PM, Lau C, et al: Prediction of central nervous system embryonal tumor outcome based on gene expression. Nature. 2002, 415: 436-442. 10.1038/415436a.
Dasarathy BV: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. 1991, Washington, DC: IEEE Computer Society Press
Whitehead Institute, Center for Genome Research - Cancer Genomics Software. [http://www-genome.wi.mit.edu/cancer/software/software.html]