Ischemia monitoring in off-pump coronary artery bypass surgery using intravascular near-infrared spectroscopy
Tóm tắt
In off-pump coronary artery bypass surgery, manipulations on the beating heart can lead to transient interruptions of myocardial oxygen supply, which can generate an accumulation of oxygen-dependent metabolites in coronary venous blood. The objective of this study was to evaluate the reliability of intravascular near-infrared spectroscopy as a monitoring method to detect possible ischemic events in off-pump coronary artery bypass procedures. In 15 elective patients undergoing off-pump myocardial revascularization, intravascular near-infrared spectroscopic analysis of coronary venous blood was performed. NIR signals were transferred through a fiberoptic catheter for signal emission and collection. For data analysis and processing, a miniature spectrophotometer with multivariate statistical package was used. Signal acquisition and analysis were performed before and after revascularization. Spectroscopic data were compared with hemodynamic parameters, electrocardiogram, transesophageal echocardiography and laboratory findings. A conversion to extracorporeal circulation was not necessary. The mean number of grafts per patient was 3.1 ± 0.6. An intraoperative myocardial ischemia was not evident, as indicated by electrocardiogram and transesophageal echocardiography. Continuous spectroscopic analysis showed reproducible absorption spectra of coronary sinus blood. Due to uneventful intraoperative courses, clear ischemia-related changes could be detected in none of the patients. Our initial results show that intravascular near-infrared spectroscopy can reliably be used for an online intraoperative ischemia monitoring in off-pump coronary artery bypass surgery. However, the method has to be further evaluated and standardized to determine the role of spectroscopy in off-pump coronary artery bypass surgery.
Tài liệu tham khảo
Shinn HK, Oh YJ, Kim SH, Lee JH, Lee CS, Kwak YL: Evaluation of serial haemodynamic changes during coronary artery anastomoses in patients undergoing off-pump coronary artery bypass graft surgery: initial experiences using two deep pericardial stay sutures and octopus tissue stabilizer. Eur J Cardiothorac Surg. 2004, 25: 978-984. 10.1016/j.ejcts.2004.02.031.
Mueller XM, Chassot PG, Zhou J, Eisa KM, Chappuis C, Tevaearai HT, von Segesser LK: Hemodynamics optimization during off-pump coronary artery bypass: the 'no compression' technique. Eur J Cardiothorac Surg. 2002, 22: 249-254. 10.1016/S1010-7940(02)00270-1.
Mishra M, Malhotra R, Mishra A, Meharwal ZS, Trehan N: Hemodynamic changes during displacement of the beating heart using epicardial stabilization for off-pump coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2002, 16: 685-690. 10.1053/jcan.2002.128418.
Do QB, Goyer C, Chavanon O, Couture P, Denault A, Cartier R: Hemodynamic changes during off-pump CABG surgery. Eur J Cardiothorac Surg. 2002, 21: 385-390. 10.1016/S1010-7940(02)00009-X.
Wang J, Filipovic M, Rudzitis A, Michaux I, Skarvan K, Buser P, Todorov A, Bernet F, Seeberger MD: Transesophageal echocardiography for monitoring segemental wall motion during off-pump coronary artery bypass surgery. Anesth Analg. 2004, 99: 965-973. 10.1213/01.ANE.0000130614.45647.81.
Gagnon RE, Gagnon FA, Macnab AJ: Comparison of 13 published cytochrome c oxidase near-infrared spectroscopy algorythms. Eur J Appl Physiol. 1996, 74: 487-495.
Parsons WJ, Rembert JC, Baumann RP, Duhaylongsod FG, Geenfiled JC, Piantadosi CA: Myocardial oxygenation in dogs during partial and complete coronary artery occlusion. Circ Res. 1993, 73: 458-464.
Thorniley MS, Lahiri A, Glenville B, Shurey C, Baker G, Ravel U, Crawley J, Green CJ: Non-invasive measurement of cardiac oxygenation and hemodynamics during transient episodes of coronary artery occlusion and reperfusion in the pig. Clinical Science. 1996, 91: 51-58.
Kupriyanov VV, Nighswander-Rempel S, Xiang B: Mapping regional oxygenation and flow in pig hearts in vivo using near-infrared spectroscopic imaging. J Mol Cell Cardiol. 2004, 37: 947-957. 10.1016/j.yjmcc.2004.07.007.
Baykut D, Kadipasaoglu KA, Bölükoglu H, Gebhard M, Frazier OH, Zerkowski HR: Intravascular detection of ischemia by near-infrared spectroscopy. Asian Cardiovasc Thorac An. 2001, 9: 296-301.
Vályi-Nagy I, Kaffka KJ, Jákó JM, Gönczöl E, Domján G: Application of near-infrared spectroscopy to the determination of hemoglobin. Clin Chim Acta. 1997, 264: 117-125. 10.1016/S0009-8981(97)00085-5.
Macnab AJ, Leblanc J, Gagnon FA, Gagnon RE: Near infrared spectroscopy oxidized cytochrome aa3 patterns of change during cardiac surgery in children. Pediatr Res. 1995, 38: 442-449.
Irwin MS, Thorniley MS, Doré CJ, Green CJ: Near infra-red spectroscopy: a non-invasive monitor of perfusion and oxygenation within the microcirculation of limbs and flaps. Br J Plastic Surg. 1995, 48: 14-22. 10.1016/0007-1226(95)90024-1.
Wray S, Cope M, Delpy DT, Wyatt JS, Reynolds EOR: Characterization of the near-infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim Biophys Acta. 1988, 933: 184-192. 10.1016/0005-2728(88)90069-2.