Optimized Diffusion‐Weighting Gradient Waveform Design (ODGD) formulation for motion compensation and concomitant gradient nulling

Magnetic Resonance in Medicine - Tập 81 Số 2 - Trang 989-1003 - 2019
Óscar Peña‐Nogales1, Zhang Yuxin2,3, Xiaoke Wang4,3, Rodrigo de Luis‐García1, Santiago Aja‐Fernández1, James H. Holmes3, Diego Hernando2,3
1Laboratorio de Procesado de Imagen, Universidad de Valladolid, Valladolid, Spain
2Departments of Medical Physics University of Wisconsin-Madison Madison Wisconsin
3Radiology University of Wisconsin-Madison Madison Wisconsin
4Biomedical Engineering University of Wisconsin-Madison Madison Wisconsin

Tóm tắt

PurposeTo present a novel Optimized Diffusion‐weighting Gradient waveform Design (ODGD) method for the design of minimum echo time (TE), bulk motion‐compensated, and concomitant gradient (CG)‐nulling waveforms for diffusion MRI.MethodsODGD motion‐compensated waveforms were designed for various moment‐nullings Mn (n = 0, 1, 2), for a range of b‐values, and spatial resolutions, both without (ODGD‐Mn) and with CG‐nulling (ODGD‐Mn‐CG). Phantom and in‐vivo (brain and liver) experiments were conducted with various ODGD waveforms to compare motion robustness, signal‐to‐noise ratio (SNR), and apparent diffusion coefficient (ADC) maps with state‐of‐the‐art waveforms.ResultsODGD‐Mn and ODGD‐Mn‐CG waveforms reduced the TE of state‐of‐the‐art waveforms. This TE reduction resulted in significantly higher SNR (P < 0.05) in both phantom and in‐vivo experiments. ODGD‐M1 improved the SNR of BIPOLAR (42.8 ± 5.3 vs. 32.9 ± 3.3) in the brain, and ODGD‐M2 the SNR of motion‐compensated (MOCO) and Convex Optimized Diffusion Encoding‐M2 (CODE‐M2) (12.3 ± 3.6 vs. 9.7 ± 2.9 and 10.2 ± 3.4, respectively) in the liver. Further, ODGD‐M2 also showed excellent motion robustness in the liver. ODGD‐Mn‐CG waveforms reduced the CG‐related dephasing effects of non CG‐nulling waveforms in phantom and in‐vivo experiments, resulting in accurate ADC maps.ConclusionsODGD waveforms enable motion‐robust diffusion MRI with reduced TEs, increased SNR, and reduced ADC bias compared to state‐of‐the‐art waveforms in theoretical results, simulations, phantoms and in‐vivo experiments.

Từ khóa


Tài liệu tham khảo

10.1148/radiol.09090021

10.2214/AJR.06.1403

10.1063/1.1695690

10.1593/neo.81328

10.1148/radiology.161.2.3763909

10.1148/radiol.2241011117

10.1002/jmri.22816

10.1002/mrm.1910390218

10.1002/mrm.24120

10.1002/mrm.21615

10.1002/mrm.1910320313

10.1002/jmri.1880060614

10.1002/jmri.1072

Murphy P, 2013, Error model for reduction of cardiac and respiratory motion effects in quantitative liver DW‐MRI, J Magn Reson Imaging., 70, 1460

10.1002/jmri.1880010510

10.1002/jmri.23796

10.1002/mrm.25784

10.1016/0730-725X(90)90209-K

10.1002/mrm.21183

10.1002/mrm.1910400411

10.1002/mrm.26166

10.1109/TMI.2015.2411571

10.1002/jmri.25727

10.1007/978-3-319-39934-8

DeVore MD, 2000, Proceedings of the SPIE—The International Society for Optical Engineering 1999, 34

10.1016/j.media.2014.11.005

10.1002/jmri.24946

Imaging B.150028 USA Instruments INC. SNR Phantom for GE MRI.https://parts.blockimaging.com/150028‐USA‐Instruments–INC.‐SNR‐Phantom‐for‐GE‐MRI‐for‐GE–Closed‐MRI/. Accessed January 7 2018.

10.1109/42.712125

10.1039/b005319h

10.1016/j.ejrad.2007.09.016

10.1016/j.neuroimage.2013.01.038

10.1002/cmr.a.20031

10.1002/mrm.10545

10.1002/jmri.23942

10.1002/mrm.25440

10.1002/mrm.24589

10.1002/mrm.26709

10.1002/mrm.10308

10.1002/mrm.26128