The convergence of spline collocation for strongly elliptic equations on curves
Tóm tắt
Most boundary element methods for two-dimensional boundary value problems are based on point collocation on the boundary and the use of splines as trial functions. Here we present a unified asymptotic error analysis for even as well as for odd degree splines subordinate to uniform or smoothly graded meshes and prove asymptotic convergence of optimal order. The equations are collocated at the breakpoints for odd degree and the internodal midpoints for even degree splines. The crucial assumption for the generalized boundary integral and integro-differential operators is strong ellipticity. Our analysis is based on simple Fourier expansions. In particular, we extend results by J. Saranen and W.L. Wendland from constant to variable coefficient equations. Our results include the first convergence proof of midpoint collocation with piecewise constant functions, i.e., the panel method for solving systems of Cauchy singular integral equations.
Tài liệu tham khảo
Agranovitch, M.S.: Spectral properties of elliptic pseudodifferential operators on a closed curve. Russ. Math. Surv.13, 279–281 (1979)
Arnold, D.N.: A spline-trigonometric Galerkin method and an exponentially convergent boundary integral method. Math. Comput.41, 383–397 (1983)
Arnold, D.N., Wendland, W.L.: On the asymptotic convergence of collocation methods. Math. Comput.41, 349–381 (1983)
Atkinson, K.E.: A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind. Philadelphia: Soc. Ind. Appl. Math. 1976
Atkinson, K.E., Graham, I., Sloan, I.: Piecewise continuous collocation for integral equations. SIAM J. Numer. Anal.20, 172–186 (1983)
Banerjee, P.K., Butterfield, R.: Developments in Boundary Element Methods-1. London: Appl. Sci. Publ. 1979
Banerjee, P.K., Shaw, R.P.: Developments in Boundary Element Methods-2. London: Appl. Sci. Publ. 1982
Bolteus, L., Tullberg, O.: BEMSTAT — A new type of boundary element program for two-dimensional elasticity problems. In: Boundary Element Methods. C.A. Brebbia (ed.), pp. 518–537. Berlin-Heidelberg-New York: Springer 1981
Brebbia, C.A.: Progress in Boundary Element Methods. London, Plymouth: Pentech Press 1981
Brebbia, C.A.: Boundary Element Methods. Berlin-Heidelberg-New York: Springer 1981
Brebbia, C.A.: Boundary Element Techniques, Methods in Engineering. Berlin-Heidelberg-New York: Springer 1983
Brebbia, C.A., Futagami, T., Tanaka, M.: Boundary Elements. Berlin-Heidelberg-New York: Springer 1983
Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Element Techniques. Berlin-Heidelberg-New York: Springer 1984
Chatelin, F.: Spectral Approximation of Linear Operators. New York: Academic Press 1983
Crouch, S.L., Starfield, A.H.: Boundary Element Methods in Solid Mechanics. London: George Allen & Unwin 1983
Cruse, T.A.: Application of the boundary-integral equation solution method in solid mechanics. In: Variational Methods in Engineering. Dept. Civil Eng. Southampton Univ., England, 9.1–9.29, 1972
Douglas, J., Jr., Dupont, T., Wahlbin, L.: OptimalL ∞ error estimates for Galerkin approximations to solutions of two point boundary value problems. Math. Comput.29, 475–583 (1975)
Elschner, J., Schmidt, G.: On spline interpolation in periodic Sobolev spaces. preprint P-Math-01/83. Institut für Mathematik, Akademie der Wissenschaften der DDR, Berlin 1983
Filippi, P.: Theoretical Acoustics and Numerical Techniques. CISM Courses and Lectures 277. Wien-New York: Springer 1983
Hämmerlin, G., Schumaker, L.L.: Procedures for kernel approximation and solution of Fredholm integral equations of the second kind. Numer. Math.34, 125–141 (1980)
Hayes, J.K., Kahaner, D.K., Kellner, R.G.: An improved method for numerical conformal mapping. Math. Comput.26, 327–334 (1972)
Helfrich, H.-P.: Simultaneous approximation in negative norms of arbitrary order. R.A.I.R.O. Numer. Anal.15, 231–235 (1981)
Hörmander, L.: Fourier integral operators I. Acta Math.127, 79–183 (1971)
Hoidn, H.-P.: Die Kollokationsmethode angewandt auf die Symmsche Integralgleichung. Doctoral Thesis ETH Zürich, Switzerland, 1983
Hsiao, G.C., Kopp, P., Wendland, W.L.: Some applications of a Galerkin collocation method for integral equations of the first kind. Math. Meth. Appl. Sci.6, 280–325 (1984)
Ivanov, V.V.: The Theory of Approximate Methods and their Application to the Numerical Solution of Singular Integral Equations. Leyden: Noordhoff Int. Publ. 1976
Mukherjee, S.: Boundary Element Methods in Creep and Fracture. London-New York: Applied Sci. Publ. 1982
Mustoe, G.G., Mathews, I.C.: Direct boundary integral methods, point collocation and variational procedures (To appear)
Nitsche, J., Schatz, A.: On local approximation properties ofL 2-projections on spline subspaces. Appl. Anal.2, 161–168 (1972)
Nitsche, J., Schatz, A.: Interior estimates for Ritz-Galerkin methods. Math. Comput.28, 937–958 (1974)
Noble, B.: Error analysis of collocation methods for solving Fredholm integral equations. In: Topics in Numerical Analysis. J.H. Miller (ed.), pp. 211–232. London: Academic Press 1972
Prenter, P.M.: A collocation method for the numerical solution of integral equations. SIAM J. Numer. Anal.10, 570–581 (1973)
Prössdorf, S.: Ein Lokalisierungsprinzip in der Theorie der Spline-Approximationen und einige Anwendungen. Math. Nachr.119, 239–255 (1984)
Prössdorf, S., Rathsfeld, A.: A spline collocation method for singular integral equations with piecewise continuous coefficients. Integral Equations Oper. Theory7, 536–560 (1984)
Prössdorf, S., Rathsfeld, A.: On spline Galerkin methods for singular integral equations with piecewise continuous coefficients. (To appear in Numer. Math.)
Prössdorf, S., Schmidt, G.: A finite element collocation method for singular integral equations. Math. Nachr.100, 33–60 (1981)
Prössdorf, S., Schmidt, G.: A finite element collocation method for systems of singular integral equations. Preprint P-MATH-26/81. Institut für Mathematik, Akademie der Wissenschaften der DDR. Berlin 1981
Rizzo, F.J.: An integral equation approach to boundary value problems of classical elastostatics. Quart. Appl. Math.25, 83–95 (1967)
Saranen, J., Wendland, W.L.: On the asymptotic convergence of collocation methods with spline functions of even degree. (Preprint 700, Math., Techn. Univ. Darmstadt 1982) (To appear in Math. Comput.45 (1985))
Saranen, J., Wendland, W.L.: The Fourier series representation of pseudodifferential operators on closed curves. (In preparation)
Schmidt, G.: On spline collocation for singular integral equations. Math. Nachr.111, 177–196 (1983)
Schmidt, G.: On spline collocation methods for boundary integral equations in the plane. (To appear in Math. Meth. Appl. Sci.7 (1985))
Schmidt, G.: The convergence of Galerkin and collocation methods with splines for pseudodifferential equations on closed curves. Z. Anal. Anw.3, 371–384 (1984)
Seeley, R.: Topics in pseudodifferential operators. In: Pseudo-Differential Operators. L. Nirenberg (ed.), pp. 169–305. Rome: Edizione Cremonese 1969
Strichartz, R.S.: Multipliers on fractional Sobolev spaces. J. Math. Mech.16, 1031–1061 (1967)
Symm, G.T.: Integral equation methods in potential theory II. Proc. Royal Soc. London A275, 33–46 (1963)
Taylor, M.: Pseudodifferential Operators. Princeton: Princeton University Press 1981
Treves, F.: Introduction to Pseudodifferential and Fourier Integral Operators I. New York-London: Plenum Press 1980
Watson, J.O.: Hermitian cubic boundary elements for plane problems of fracture mechanics. Res. Mechanica4, 23–42 (1982)
Wendland, W.L.: Boundary element methods and their asymptotic convergence. In: Theoretical Acoustics and Numerical Techniques. P. Filippi (ed.), pp. 135–216. CISM courses and lectures 277. Wien-New York: Springer 1983
Quade, W., Collatz, L.: Zur Interpolationstheorie der reellen periodischen Funktionen. Sonderausgabe d. Sitzungsber. d. Preußischen Akad. d. Wiss., Phys.-math. Kl., pp. 1–49. Berlin: Verlag d. Akad. d. Wiss. 1938