Fluoride inhibition of Sporosarcina pasteurii urease: structure and thermodynamics
Tóm tắt
Urease is a nickel-dependent enzyme and a virulence factor for ureolytic bacterial human pathogens, but it is also necessary to convert urea, the most worldwide used fertilizer, into forms of nitrogen that can be taken up by crop plants. A strategy to control the activity of urease for medical and agricultural applications is to use enzyme inhibitors. Fluoride is a known urease inhibitor, but the structural basis of its mode of inhibition is still undetermined. Here, kinetic studies on the fluoride-induced inhibition of urease from Sporosarcina pasteurii, a widespread and highly ureolytic soil bacterium, were performed using isothermal titration calorimetry and revealed a mixed competitive and uncompetitive mechanism. The pH dependence of the inhibition constants, investigated in the 6.5–8.0 range, reveals a predominant uncompetitive mechanism that increases by increasing the pH, and a lesser competitive inhibition that increases by lowering the pH. Ten crystal structures of the enzyme were independently determined using five crystals of the native form and five crystals of the protein crystallized in the presence of fluoride. The analysis of these structures revealed the presence of two fluoride anions coordinated to the Ni(II) ions in the active site, in terminal and bridging positions. The present study consistently supports an interaction of fluoride with the nickel centers in the urease active site in which one fluoride competitively binds to the Ni(II) ion proposed to coordinate urea in the initial step of the catalytic mechanism, while another fluoride uncompetitively substitutes the Ni(II)-bridging hydroxide, blocking its nucleophilic attack on urea.
Tài liệu tham khảo
Maroney MJ, Ciurli S (2014) Chem Rev 114:4206–4228
Mobley HLT, Hausinger RP (1989) Microbiol Rev 53:85–108
Karplus PA, Pearson MA, Hausinger RP (1997) Acc Chem Res 30:330–337
Krajewska B (2009) J Mol Cat B Enzymatic 59:9–21
Zambelli B, Musiani F, Benini S, Ciurli S (2011) Acc Chem Res 44:520–530
Callahan BP, Yuan Y, Wolfenden R (2005) J Am Chem Soc 127:10828–10829
Ciurli S, Benini S, Rypniewski WR, Wilson KS, Miletti S, Mangani S (1999) Coord Chem Rev 190–192:331–355
Burne RA, Chen YY (2000) Microbes Infect 2:533–542
Ciurli S (2007) Nickel and its surprising impact in nature. Wiley, Chichester, pp 241–278
Benini S, Musiani F, Ciurli S (2013) In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins. Springer, New York, pp 2287–2292
Farrugia MA, Macomber L, Hausinger RP (2013) J Biol Chem 288:13178–13185
Jabri E, Carr MB, Hausinger RP, Karplus PA (1995) Science 268:998–1004
Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S (1999) Structure 7:205–216
Ha N-C, Oh S-T, Sung JY, Cha KA, Lee MH, Oh B-H (2001) Nat Struct Biol 8:505–509
Balasubramanian A, Ponnuraj K (2010) J Mol Biol 400:274–283
Balasubramanian A, Durairajpandian V, Elumalai S, Mathivanan N, Munirajan AK, Ponnuraj K (2013) Int J Biol Macromol 58:301–309
Kosikowska P, Berlicki Ł (2011) Expert Opin Ther Pat 21:945–957
Vassiliou S, Grabowiecka A, Kosikowska P, Yiotakis A, Kafarski P, Berlicki Ł (2008) J Med Chem 51:5736–5744
Vassiliou S, Kosikowska P, Grabowiecka A, Yiotakis A, Kafarski P, Berlicki Ł (2010) J Med Chem 53:5597–5606
Berlicki Ł, Bochno M, Grabowiecka A, Białas A, Kosikowska P, Kafarski P (2012) Amino Acids 42:1937–1945
Benini S, Rypniewski WR, Wilson KS, Ciurli S, Mangani S (1998) J Biol Inorg Chem 3:268–273
Pearson MA, Overbye Michel L, Hausinger RP, Karplus PA (1997) Biochemistry 36:8164–8172
Benini S, Rypniewski WR, Wilson KS, Miletti S, Ciurli S, Mangani S (2000) J Biol Inorg Chem 5:110–118
Benini S, Rypniewski WR, Wilson KS, Ciurli S, Mangani S (2001) J Biol Inorg Chem 6:778–790
Benini S, Rypniewski WR, Wilson KS, Mangani S, Ciurli S (2004) J Am Chem Soc 126:3714–3715
Benini S, Kosikowska P, Cianci M, Mazzei L, Vara AG, Berlicki Ł, Ciurli S (2013) J Biol Inorg Chem 18:391–399
Dixon NE, Blakeley RL, Zerner B (1980) Can J Biochem 58:481–488
Todd MJ, Hausinger RP (2000) Biochemistry 39:5389–5396
Saboury AA, Moosavi-Movahedi AA (1997) J Enz Inhib 12:273–279
Krajewska B, Zaborska W, Leszko M (2001) J Mol Catal B 14:101–109
Todd MJ, Gomez J (2001) Anal Biochem 296:179–187
Mazzei L, Ciurli S, Zambelli B (2014) J Vis Exp (86):e51487. doi:10.3791/51487
Segel IH (1993) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley-Interscience, New York
Kabsch W (2010) Acta Crystallogr D Biol Crystallogr 66:125–132
N. Collaborative Computational Project (1994) Acta Cryst D50:760–763
Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr D Biol Crystallogr 53:240–255
Murshudov GN, Vagin AA, Lebedev A, Wilson KS, Dodson EJ (1999) Acta Crystallogr D Biol Crystallogr 55:247–255
Emsley P, Cowtan K (2004) Acta Crystallogr D Biol Crystallogr 60:2126–2132
Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Acta Crystallogr D Biol Crystallogr 66:486–501
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605–1612
Pedroso MM, Ely F, Lonhienne T, Gahan LR, Ollis DL, Guddat LW, Schenk GG (2014) J Biol Inorg Chem 19:389–398
Ciurli S, Marzadori C, Benini S, Deiana S, Gessa C (1996) Soil Biol Biochem 28:811–817
Benini S, Gessa C, Ciurli S (1996) Soil Biol Biochem 28:819–821
Quiroz-Valenzuela S, Sukuru SC, Hausinger RP, Kuhn LA, Heller WT (2008) Arch Biochem Biophys 480:51–57
Cruickshank DWJ (1999) Acta Cryst D55:583–601
Addison AW, Rao TN, Reedijk J, van Rijn J, Verschoor GC (1984) J Chem Soc Dalton Trans (7):1349–1356
Mystkowski EM (1928) Acta Biol Exp. Varsovie 2:212–224
Pearson RM, Smith J (1943) Biochem J 37:153–164
Dixon NE, Gazzola C, Blakeley R, Zerner B (1975) J Am Chem Soc 97:4131–4132
Samygina VR, Moiseev VM, Rodina EV, Vorobyeva NN, Popov AN, Kurilova SA, Nazarova TI, Avaeva SM, Bartunik HD (2007) J Mol Biol 366:1305–1317
Cama E, Pethe S, Boucher JL, Han S, Emig FA, Ash DE, Viola RE, Mansuy D, Christianson DW (2004) Biochemistry 43:8987–8999
Qin J, Chai G, Brewer JM, Lovelace LL, Lebioda L (2006) Biochemistry 45:793–800
Thorsell A-G, Persson C, Grslund S, Hammarstrm M, Busam RD, Hallberg BM (2009) Proteins Struct Funct Bioinform 77:242–246
Schenk G, Elliott TW, Leung E, Carrington LE, Mitic N, Gahan LR, Guddat LW (2008) BMC Struct Biol 8:6
Musiani F, Arnofi E, Casadio R, Ciurli S (2001) J Biol Inorg Chem 6:300–314
Christianson DW (2005) Acc Chem Res 38:191–201
Mitić NN, Smith SJS, Neves AA, Guddat LW, Gahan LRL, Schenk GG (2006) Chem Rev 106:3338–3363
Schenk GG, Mitić NN, Gahan LR, Ollis DL, McGeary RP, Guddat LW (2012) Acc Chem Res 45:1593–1603
Pethe SS, Boucher JLJ, Mansuy DD (2002) J Inorg Biochem 88:397–402
Xie X-Y, Wang C-X, Wang Z-Y (2004) J Therm Anal Calorim 77:1005–1012
Elliot TW, Mitić NN, Gahan LR, Guddat LW, Schenk GG (2006) J Braz Chem Soc 17:1558–1565
Mitić NN, Valizadeh M, Leung EW, de Jersey J, Hamilton S, Hume DA, Cassady AI, Schenk GG (2005) Arch Biochem Biophys 439:154–164