Genetic polymorphisms in glutathione S-transferase (GST) superfamily and risk of arsenic-induced urothelial carcinoma in residents of southwestern Taiwan
Tóm tắt
Arsenic exposure is an important public health issue worldwide. Dose-response relationship between arsenic exposure and risk of urothelial carcinoma (UC) is consistently observed. Inorganic arsenic is methylated to form the metabolites monomethylarsonic acid and dimethylarsinic acid while ingested. Variations in capacity of xenobiotic detoxification and arsenic methylation might explain individual variation in susceptibility to arsenic-induced cancers. To estimate individual susceptibility to arsenic-induced UC, 764 DNA specimens from our long-term follow-up cohort in Southwestern Taiwan were used and the genetic polymorphisms in GSTM1, GSTT1, GSTP1 and arsenic methylation enzymes including GSTO1 and GSTO2 were genotyped. The GSTT1 null was marginally associated with increased urothelial carcinoma (UC) risk (HR, 1.91, 95% CI, 1.00-3.65), while the association was not observed for other GSTs. Among the subjects with cumulative arsenic exposure (CAE) ≥ 20 mg/L*year, the GSTT1 null genotype conferred a significantly increased cancer risk (RR, 3.25, 95% CI, 1.20-8.80). The gene-environment interaction between the GSTT1 and high arsenic exposure with respect to cancer risk was statistically significant (multiplicative model, p = 0.0151) and etiologic fraction was as high as 0.86 (95% CI, 0.51-1.22). The genetic effects of GSTO1/GSTO2 were largely confined to high arsenic level (CAE ≥ 20). Diplotype analysis showed that among subjects exposed to high levels of arsenic, the AGG/AGG variant of GSTO1 Ala140Asp, GSTO2 5'UTR (-183)A/G, and GSTO2 Asn142Asp was associated with an increased cancer risk (HRs, 4.91, 95% CI, 1.02-23.74) when compared to the all-wildtype reference, respectively. The GSTs do not play a critical role in arsenic-induced urothelial carcinogenesis. The genetic effects of GSTT1 and GSTO1 on arsenic-induced urothelial carcinogenesis are largely confined to very high exposure level.
Tài liệu tham khảo
Chen CJ: Blackfoot disease. Lancet. 1990, 336: 442-
Tseng WP: Effects and dose--response relationships of skin cancer and blackfoot disease with arsenic. Environ Health Perspect. 1977, 19: 109-119.
Chen CJ, Chiou HY, Chiang MH, Lin LJ, Tai TY: Dose-response relationship between ischemic heart disease mortality and long-term arsenic exposure. Arterioscler Thromb Vasc Biol. 1996, 16: 504-510. 10.1161/01.ATV.16.4.504.
Tseng CH, Chong CK, Tseng CP, Hsueh YM, Chiou HY, Tseng CC, Chen CJ: Long-term arsenic exposure and ischemic heart disease in arseniasis-hyperendemic villages in Taiwan. Toxicol Lett. 2003, 137: 15-21. 10.1016/S0378-4274(02)00377-6.
Chen CJ, Hsueh YM, Lai MS, Shyu MP, Chen SY, Wu MM, Kuo TL, Tai TY: Increased prevalence of hypertension and long-term arsenic exposure. Hypertension. 1995, 25: 53-60.
Lai MS, Hsueh YM, Chen CJ, Shyu MP, Chen SY, Kuo TL, Wu MM, Tai TY: Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol. 1994, 139: 484-492.
Chiou HY, Huang WI, Su CL, Chang SF, Hsu YH, Chen CJ: Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic. Stroke. 1997, 28: 1717-1723. 10.1161/01.STR.28.9.1717.
Tseng CH, Chong CK, Chen CJ, Tai TY: Dose-response relationship between peripheral vascular disease and ingested inorganic arsenic among residents in blackfoot disease endemic villages in Taiwan. Atherosclerosis. 1996, 120: 125-133. 10.1016/0021-9150(95)05693-9.
Chen CJ, Kuo TL, Wu MM: Arsenic and cancers. Lancet. 1988, 1: 414-415.
Wu MM, Kuo TL, Hwang YH, Chen CJ: Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. Am J Epidemiol. 1989, 130: 1123-1132.
Chiou HY, Chiou ST, Hsu YH, Chou YL, Tseng CH, Wei ML, Chen CJ: Incidence of transitional cell carcinoma and arsenic in drinking water: a follow-up study of 8,102 residents in an arseniasis-endemic area in northeastern Taiwan. Am J Epidemiol. 2001, 153: 411-418. 10.1093/aje/153.5.411.
Chiou HY, Hsueh YM, Liaw KF, Horng SF, Chiang MH, Pu YS, Lin JS, Huang CH, Chen CJ: Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan. Cancer Res. 1995, 55: 1296-1300.
Kurttio P, Pukkala E, Kahelin H, Auvinen A, Pekkanen J: Arsenic concentrations in well water and risk of bladder and kidney cancer in Finland. Environ Health Perspect. 1999, 107: 705-710. 10.1289/ehp.99107705.
Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ: Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol. 2000, 74: 289-299. 10.1007/s002040000134.
Styblo M, Drobna Z, Jaspers I, Lin S, Thomas DJ: The role of biomethylation in toxicity and carcinogenicity of arsenic: a research update. Environ Health Perspect. 2002, 110 (Suppl 5): 767-771.
Vahter M: Genetic polymorphism in the biotransformation of inorganic arsenic and its role in toxicity. Toxicol Lett. 2000, 112-113: 209-217.
Tseng CH, Huang YK, Huang YL, Chung CJ, Yang MH, Chen CJ, Hsueh YM: Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in blackfoot disease-hyperendemic villages in Taiwan. Toxicol Appl Pharmacol. 2005, 206: 299-308. 10.1016/j.taap.2004.11.022.
Chung CJ, Huang CJ, Pu YS, Su CT, Huang YK, Chen YT, Hsueh YM: Urinary 8-hydroxydeoxyguanosine and urothelial carcinoma risk in low arsenic exposure area. Toxicol Appl Pharmacol. 2008, 226: 14-21. 10.1016/j.taap.2007.08.021.
Huang YL, Hsueh YM, Huang YK, Yip PK, Yang MH, Chen CJ: Urinary arsenic methylation capability and carotid atherosclerosis risk in subjects living in arsenicosis-hyperendemic areas in southwestern Taiwan. Sci Total Environ. 2009, 407: 2608-2614. 10.1016/j.scitotenv.2008.12.061.
Ahsan H, Chen Y, Kibriya MG, Slavkovich V, Parvez F, Jasmine F, Gamble MV, Graziano JH: Arsenic metabolism, genetic susceptibility, and risk of premalignant skin lesions in Bangladesh. Cancer Epidemiol Biomarkers Prev. 2007, 16: 1270-1278. 10.1158/1055-9965.EPI-06-0676.
McCarty KM, Chen YC, Quamruzzaman Q, Rahman M, Mahiuddin G, Hsueh YM, Su L, Smith T, Ryan L, Christiani DC: Arsenic methylation, GSTT1, GSTM1, GSTP1 polymorphisms, and skin lesions. Environ Health Perspect. 2007, 115: 341-345. 10.1289/ehp.10151.
Hernandez A, Marcos R: Genetic variations associated with interindividual sensitivity in the response to arsenic exposure. Pharmacogenomics. 2008, 9: 1113-1132. 10.2217/14622416.9.8.1113.
Tseng CH: A review on environmental factors regulating arsenic methylation in humans. Toxicol Appl Pharmacol. 2009, 235: 338-350. 10.1016/j.taap.2008.12.016.
Board PG, Coggan M, Chelvanayagam G, Easteal S, Jermiin LS, Schulte GK, Danley DE, Hoth LR, Griffor MC, Kamath AV: Identification, characterization, and crystal structure of the Omega class glutathione transferases. J Biol Chem. 2000, 275: 24798-24806. 10.1074/jbc.M001706200.
Lin S, Shi Q, Nix FB, Styblo M, Beck MA, Herbin-Davis KM, Hall LL, Simeonsson JB, Thomas DJ: A novel S-adenosyl-L-methionine:arsenic(III) methyltransferase from rat liver cytosol. J Biol Chem. 2002, 277: 10795-10803. 10.1074/jbc.M110246200.
Zakharyan RA, Sampayo-Reyes A, Healy SM, Tsaprailis G, Board PG, Liebler DC, Aposhian HV: Human monomethylarsonic acid (MMA(V)) reductase is a member of the glutathione-S-transferase superfamily. Chem Res Toxicol. 2001, 14: 1051-1057. 10.1021/tx010052h.
Schmuck EM, Board PG, Whitbread AK, Tetlow N, Cavanaugh JA, Blackburn AC, Masoumi A: Characterization of the monomethylarsonate reductase and dehydroascorbate reductase activities of Omega class glutathione transferase variants: implications for arsenic metabolism and the age-at-onset of Alzheimer's and Parkinson's diseases. Pharmacogenet Genomics. 2005, 15: 493-501. 10.1097/01.fpc.0000165725.81559.e3.
Schlawicke Engstrom K, Broberg K, Concha G, Nermell B, Warholm M, Vahter M: Genetic polymorphisms influencing arsenic metabolism: evidence from Argentina. Environ Health Perspect. 2007, 115: 599-605. 10.1289/ehp.9734.
Paiva L, Marcos R, Creus A, Coggan M, Oakley AJ, Board PG: Polymorphism of glutathione transferase Omega 1 in a population exposed to a high environmental arsenic burden. Pharmacogenet Genomics. 2008, 18: 1-10. 10.1097/FPC.0b013e3282f29663.
Lindberg AL, Kumar R, Goessler W, Thirumaran R, Gurzau E, Koppova K, Rudnai P, Leonardi G, Fletcher T, Vahter M: Metabolism of low-dose inorganic arsenic in a central European population: influence of sex and genetic polymorphisms. Environ Health Perspect. 2007, 115: 1081-1086. 10.1289/ehp.10026.
Chung CJ, Hsueh YM, Bai CH, Huang YK, Huang YL, Yang MH, Chen CJ: Polymorphisms in arsenic metabolism genes, urinary arsenic methylation profile and cancer. Cancer Causes Control. 2009, 20: 1653-1661. 10.1007/s10552-009-9413-0.
Marnell LL, Garcia-Vargas GG, Chowdhury UK, Zakharyan RA, Walsh B, Avram MD, Kopplin MJ, Cebrian ME, Silbergeld EK, Aposhian HV: Polymorphisms in the human monomethylarsonic acid (MMA V) reductase/hGSTO1 gene and changes in urinary arsenic profiles. Chem Res Toxicol. 2003, 16: 1507-1513. 10.1021/tx034149a.
Wang YH, Yeh SD, Shen KH, Shen CH, Juang GD, Hsu LI, Chiou HY, Chen CJ: A significantly joint effect between arsenic and occupational exposures and risk genotypes/diplotypes of CYP2E1, GSTO1 and GSTO2 on risk of urothelial carcinoma. Toxicol Appl Pharmacol. 2009, 241: 111-118. 10.1016/j.taap.2009.08.008.
Wu HY CK, Tseng WP, Hsu CL: Epidemiologic studies on blackfoot disease. I. Prevalence and incidence of the disease by age, sex, year occupation and geographical distribution. Book Epidemiologic studies on blackfoot disease. I. Prevalence and incidence of the disease by age, sex, year occupation and geographical distribution. 1961, City: National Taiwan University, 7: 33-50.
Seidegard J, Ekstrom G: The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics. Environ Health Perspect. 1997, 105 (Suppl 4): 791-799. 10.1289/ehp.97105s4791.
Brambila EM, Achanzar WE, Qu W, Webber MM, Waalkes MP: Chronic arsenic-exposed human prostate epithelial cells exhibit stable arsenic tolerance: mechanistic implications of altered cellular glutathione and glutathione S-transferase. Toxicol Appl Pharmacol. 2002, 183: 99-107. 10.1006/taap.2002.9468.
Chen CL, Hsu LI, Chiou HY, Hsueh YM, Chen SY, Wu MM, Chen CJ: Ingested arsenic, cigarette smoking, and lung cancer risk: a follow-up study in arseniasis-endemic areas in Taiwan. Jama. 2004, 292: 2984-2990. 10.1001/jama.292.24.2984.
McCarty KM, Ryan L, Houseman EA, Williams PL, Miller DP, Quamruzzaman Q, Rahman M, Mahiuddin G, Smith T, Gonzalez E: A case-control study of GST polymorphisms and arsenic related skin lesions. Environ Health. 2007, 6: 5-10.1186/1476-069X-6-5.
Hsu LI, Chiu AW, Huan SK, Chen CL, Wang YH, Hsieh FI, Chou WL, Wang LH, Chen CJ: SNPs of GSTM1, T1, P1, epoxide hydrolase and DNA repair enzyme XRCC1 and risk of urinary transitional cell carcinoma in southwestern Taiwan. Toxicol Appl Pharmacol. 2008, 228: 144-155. 10.1016/j.taap.2007.12.003.
Chiou HY, Hsueh YM, Hsieh LL, Hsu LI, Hsu YH, Hsieh FI, Wei ML, Chen HC, Yang HT, Leu LC: Arsenic methylation capacity, body retention, and null genotypes of glutathione S-transferase M1 and T1 among current arsenic-exposed residents in Taiwan. Mutat Res. 1997, 386: 197-207. 10.1016/S1383-5742(97)00005-7.
Yeh JY, Cheng LC, Ou BR, Whanger DP, Chang LW: Differential influences of various arsenic compounds on glutathione redox status and antioxidative enzymes in porcine endothelial cells. Cell Mol Life Sci. 2002, 59: 1972-1982. 10.1007/PL00012519.
Brockmoller J, Cascorbi I, Kerb R, Roots I: Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res. 1996, 56: 3915-3925.
Hung RJ, Boffetta P, Brennan P, Malaveille C, Hautefeuille A, Donato F, Gelatti U, Spaliviero M, Placidi D, Carta A: GST, NAT, SULT1A1, CYP1B1 genetic polymorphisms, interactions with environmental exposures and bladder cancer risk in a high-risk population. Int J Cancer. 2004, 110: 598-604. 10.1002/ijc.20157.
Hayes JD, McLellan LI: Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res. 1999, 31: 273-300. 10.1080/10715769900300851.
Spiteri MA, Bianco A, Strange RC, Fryer AA: Polymorphisms at the glutathione S-transferase, GSTP1 locus: a novel mechanism for susceptibility and development of atopic airway inflammation. Allergy. 2000, 55 (Suppl 61): 15-20. 10.1034/j.1398-9995.2000.00502.x.
Di Pietro G, Magno LA, Rios-Santos F: Glutathione S-transferases: an overview in cancer research. Expert Opin Drug Metab Toxicol. 2010, 6: 153-170. 10.1517/17425250903427980.
Liu SX, Athar M, Lippai I, Waldren C, Hei TK: Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proceedings of the National Academy of Sciences of the United States of America. 2001, 98: 1643-1648. 10.1073/pnas.031482998.
De Vizcaya-Ruiz A, Barbier O, Ruiz-Ramos R, Cebrian ME: Biomarkers of oxidative stress and damage in human populations exposed to arsenic. Mutat Res. 2009, 674: 85-92.
Wu MM, Chiou HY, Wang TW, Hsueh YM, Wang IH, Chen CJ, Lee TC: Association of blood arsenic levels with increased reactive oxidants and decreased antioxidant capacity in a human population of northeastern Taiwan. Environ Health Perspect. 2001, 109: 1011-1017.
Agusa T, Iwata H, Fujihara J, Kunito T, Takeshita H, Minh TB, Trang PT, Viet PH, Tanabe S: Genetic polymorphisms in glutathione S-transferase (GST) superfamily and arsenic metabolism in residents of the Red River Delta, Vietnam. Toxicol Appl Pharmacol. 2010, 242: 352-362. 10.1016/j.taap.2009.11.007.
Potter DM: A permutation test for inference in logistic regression with small- and moderate-sized data sets. Stat Med. 2005, 24: 693-708. 10.1002/sim.1931.