Standardized representation, visualization and searchable repository of antiretroviral treatment-change episodes
Tóm tắt
To identify the determinants of successful antiretroviral (ARV) therapy, researchers study the virological responses to treatment-change episodes (TCEs) accompanied by baseline plasma HIV-1 RNA levels, CD4+ T lymphocyte counts, and genotypic resistance data. Such studies, however, often differ in their inclusion and virological response criteria making direct comparisons of study results problematic. Moreover, the absence of a standard method for representing the data comprising a TCE makes it difficult to apply uniform criteria in the analysis of published studies of TCEs. To facilitate data sharing for TCE analyses, we developed an XML (Extensible Markup Language) Schema that represents the temporal relationship between plasma HIV-1 RNA levels, CD4 counts and genotypic drug resistance data surrounding an ARV treatment change. To demonstrate the adaptability of the TCE XML Schema to different clinical environments, we collaborate with four clinics to create a public repository of about 1,500 TCEs. Despite the nascent state of this TCE XML Repository, we were able to perform an analysis that generated a novel hypothesis pertaining to the optimal use of second-line therapies in resource-limited settings. We also developed an online program (TCE Finder) for searching the TCE XML Repository and another program (TCE Viewer) for generating a graphical depiction of a TCE from a TCE XML Schema document. The TCE Suite of applications – the XML Schema, Viewer, Finder, and Repository – addresses several major needs in the analysis of the predictors of virological response to ARV therapy. The TCE XML Schema and Viewer facilitate sharing data comprising a TCE. The TCE Repository, the only publicly available collection of TCEs, and the TCE Finder can be used for testing the predictive value of genotypic resistance interpretation systems and potentially for generating and testing novel hypotheses pertaining to the optimal use of salvage ARV therapy.
Tài liệu tham khảo
Brun-Vezinet F, Costagliola D, Khaled MA, Calvez V, Clavel F, Clotet B, Haubrich R, Kempf D, King M, Kuritzkes D: Clinically validated genotype analysis: guiding principles and statistical concerns. Antivir Ther. 2004, 9: 465-478.
Kempf DJ, Isaacson JD, King MS, Brun SC, Sylte J, Richards B, Bernstein B, Rode R, Sun E: Analysis of the virological response with respect to baseline viral phenotype and genotype in protease inhibitor-experienced HIV-1-infected patients receiving lopinavir/ritonavir therapy. Antivir Ther. 2002, 7: 165-174.
Miller MD, Margot N, Lu B, Zhong L, Chen SS, Cheng A, Wulfsohn M: Genotypic and phenotypic predictors of the magnitude of response to tenofovir disoproxil fumarate treatment in antiretroviral-experienced patients. J Infect Dis. 2004, 189: 837-846. 10.1086/381784
Lanier ER, Ait-Khaled M, Scott J, Stone C, Melby T, Sturge G, St Clair M, Steel H, Hetherington S, Pearce G: Antiviral efficacy of abacavir in antiretroviral therapy-experienced adults harbouring HIV-1 with specific patterns of resistance to nucleoside reverse transcriptase inhibitors. Antivir Ther. 2004, 9: 37-45.
Baxter JD, Schapiro JM, Boucher CA, Kohlbrenner VM, Hall DB, Scherer JR, Mayers DL: Genotypic changes in human immunodeficiency virus type 1 protease associated with reduced susceptibility and virologic response to the protease inhibitor tipranavir. J Virol. 2006, 80: 10794-10801. 10.1128/JVI.00712-06
King MS, Rode R, Cohen-Codar I, Calvez V, Marcelin AG, Hanna GJ, Kempf DJ: Predictive genotypic algorithm for virologic response to lopinavir-ritonavir in protease inhibitor-experienced patients. Antimicrob Agents Chemother. 2007, 51: 3067-3074. 10.1128/AAC.00388-07
De Meyer S, Dierynck I, Lathouwers E, Van Baelen B, Vangeneugden T, Spinosa-Guzman S, Peeters M, Picchio G, de Bethune M: Phenotypic and genotypic determinants of resistance to darunavir: analysis of data from treatment experienced patients in POWER 1, 2, 3 and DUET-1 and 2 [abstract 33]. Antivir Ther. 2008, 13 (Suppl 3): A33-
Vingerhoets J, Tambuyzer L, Azijn H, Hoogstoel A, Nijs S, Peeters M, de Bethune MP, De Smedt G, Woodfall B, Picchio G: Resistance profile of etravirine: combined analysis of baseline genotypic and phenotypic data from the randomized, controlled Phase III clinical studies. Aids. 2010, Epub (ahead of print)
Berman JJ, Bhatia K: Biomedical data integration: using XML to link clinical and research data sets. Expert Rev Mol Diagn. 2005, 5: 329-336. 10.1586/14737159.5.3.329
US Department of Health and Human Services Panel on Clinical Practices for Treatment of HIV Infection A:Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents (The living document, January 2011). In; 2011http://aidsinfo.nih.gov/
Brun-Vezinet F, Descamps D, Ruffault A, Masquelier B, Calvez V, Peytavin G, Telles F, Morand-Joubert L, Meynard JL, Vray M, Costagliola D: Clinically relevant interpretation of genotype for resistance to abacavir. AIDS. 2003, 17: 1795-1802. 10.1097/00002030-200308150-00008
Masquelier B, Tamalet C, Montes B, Descamps D, Peytavin G, Bocket L, Wirden M, Izopet J, Schneider V, Ferre V: Genotypic determinants of the virological response to tenofovir disoproxil fumarate in nucleoside reverse transcriptase inhibitor-experienced patients. Antivir Ther. 2004, 9: 315-323.
Loutfy MR, Raboud JM, Walmsley SL, Saskin R, Montaner JS, Hogg RS, Thompson CA, Harrigan PR: Predictive value of HIV-1 protease genotype and virtual phenotype on the virological response to lopinavir/ritonavir-containing salvage regimens. Antivir Ther. 2004, 9: 595-602.
Molina JM, Marcelin AG, Pavie J, Heripret L, De Boever CM, Troccaz M, Leleu G, Calvez V: Didanosine in HIV-1-infected patients experiencing failure of antiretroviral therapy: a randomized placebo-controlled trial. J Infect Dis. 2005, 191: 840-847. 10.1086/428094
De Luca A, Giambenedetto SD, Trotta MP, Colafigli M, Prosperi M, Ruiz L, Baxter J, Clevenbergh P, Cauda R, Perno CF, Antinori A: Improved interpretation of genotypic changes in the HIV-1 reverse transcriptase coding region that determine the virological response to didanosine. J Infect Dis. 2007, 196: 1645-1653. 10.1086/522231
Grant P, Wong EC, Rode R, Shafer R, De Luca A, Nadler J, Hawkins T, Cohen C, Harrington R, Kempf D, Zolopa A: Virologic response to lopinavir-ritonavir-based antiretroviral regimens in a multicenter international clinical cohort: comparison of genotypic interpretation scores. Antimicrob Agents Chemother. 2008, 52: 4050-4056. 10.1128/AAC.00605-08
Masquelier B, Assoumou KL, Descamps D, Bocket L, Cottalorda J, Ruffault A, Marcelin AG, Morand-Joubert L, Tamalet C, Charpentier C: Clinically validated mutation scores for HIV-1 resistance to fosamprenavir/ritonavir. J Antimicrob Chemother. 2008, 61: 1362-1368. 10.1093/jac/dkn127
De Luca A, Di Giambenedetto S, Maserati R, Gianotti N, Narciso P, Antinori A, Di Perri G, Prosperi MC, Baldanti F, Micheli V: Interpretation of genotypic HIV-1 resistance to darunavir and virological response: validation of available systems and of a new score. Antivir Ther. 2011, 16: 489-497. 10.3851/IMP1799
De Luca A, Cingolani A, Di Giambenedetto S, Trotta MP, Baldini F, Rizzo MG, Bertoli A, Liuzzi G, Narciso P, Murri R: Variable prediction of antiretroviral treatment outcome by different systems for interpreting genotypic human immunodeficiency virus type 1 drug resistance. J Infect Dis. 2003, 187: 1934-1943. 10.1086/375355
Fox ZV, Geretti AM, Kjaer J, Dragsted UB, Phillips AN, Gerstoft J, Staszewski S, Clotet B, von Wyl V, Lundgren JD: The ability of four genotypic interpretation systems to predict virological response to ritonavir-boosted protease inhibitors. AIDS. 2007, 21: 2033-2042. 10.1097/QAD.0b013e32825a69e4
Prosperi MC, Di Giambenedetto S, Fanti I, Meini G, Bruzzone B, Callegaro A, Penco G, Bagnarelli P, Micheli V, Paolini E: A prognostic model for estimating the time to virologic failure in HIV-1 infected patients undergoing a new combination antiretroviral therapy regimen. BMC Med Inform Decis Mak. 2011, 11: 40- 10.1186/1472-6947-11-40
Larder B, Wang D, Revell A, Montaner J, Harrigan R, De Wolf F, Lange J, Wegner S, Ruiz L, Perez-Elias MJ: The development of artificial neural networks to predict virological response to combination HIV therapy. Antivir Ther. 2007, 12: 15-24.
Kjaer J, Ledergerber B: HIV cohort collaborations: proposal for harmonization of data exchange. Antivir Ther. 2004, 9: 631-633.
Howe HL, Lake AJ, Shen T: Method to assess identifiability in electronic data files. Am J Epidemiol. 2007, 165: 597-601.
Altmann A, Daumer M, Beerenwinkel N, Peres Y, Schulter E, Buch J, Rhee SY, Sonnerborg A, Fessel WJ, Shafer RW: Predicting the response to combination antiretroviral therapy: retrospective validation of geno2pheno-THEO on a large clinical database. J Infect Dis. 2009, 199: 999-1006. 10.1086/597305
Rhee SY, Fessel WJ, Liu TF, Marlowe NM, Rowland CM, Rode RA, Vandamme AM, Van Laethem K, Brun-Vezinet F, Calvez V: Predictive value of HIV-1 genotypic resistance test interpretation algorithms. J Infect Dis. 2009, 200: 453-463. 10.1086/600073
Hosseinipour MC, Kumwenda JJ, Weigel R, Brown LB, Mzinganjira D, Mhango B, Eron JJ, Phiri S, van Oosterhout JJ: Second-line treatment in the Malawi antiretroviral programme: high early mortality, but good outcomes in survivors, despite extensive drug resistance at baseline. HIV Med. 2010, 11: 510-518.