Understanding the role of OXPHOS dysfunction in the pathogenesis of ECHS1 deficiency

FEBS Letters - Tập 594 Số 4 - Trang 590-610 - 2020
Harrison James Burgin1, Matthew McKenzie2,3,1
1School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Australia
2Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Australia
3Department of Molecular and Translational Science, Monash University, Melbourne, Australia

Tóm tắt

Mitochondria provide the main source of energy for eukaryotic cells, oxidizing fatty acids and sugars to generate ATP. Mitochondrial fatty acid β‐oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two key pathways involved in this process. Disruption of FAO can cause human disease, with patients commonly presenting with liver failure, hypoketotic glycaemia and rhabdomyolysis. However, patients with deficiencies in the FAO enzyme short‐chain enoyl‐CoA hydratase 1 (ECHS1) are typically diagnosed with Leigh syndrome, a lethal form of subacute necrotizing encephalomyelopathy that is normally associated with OXPHOS dysfunction. Furthermore, some ECHS1‐deficient patients also exhibit secondary OXPHOS defects. This sequela of FAO disorders has long been thought to be caused by the accumulation of inhibitory fatty acid intermediates. However, new evidence suggests that the mechanisms involved are more complex, and that disruption of OXPHOS protein complex biogenesis and/or stability is also involved. In this review, we examine the clinical, biochemical and genetic features of all ECHS1‐deficient patients described to date. In particular, we consider the secondary OXPHOS defects associated with ECHS1 deficiency and discuss their possible contribution to disease pathogenesis.

Từ khóa


Tài liệu tham khảo

10.1111/cge.12891

10.1186/s12883-018-1103-7

10.1007/s10545-017-0036-4

10.1016/j.ymgme.2017.02.002

10.1007/8904_2018_111

10.1186/s13023-015-0290-1

10.1002/ajmg.a.38658

10.1007/8904_2016_538

10.1002/acn3.189

10.1007/8904_2017_48

10.1007/s00415-016-8381-z

10.1007/s11011-016-9842-x

10.1007/s10545-017-0042-6

10.1002/mds.26610

10.1093/brain/awu216

10.1002/humu.22730

10.1016/j.cca.2018.03.002

10.1038/gim.2016.1

10.1007/s00439-015-1577-y

10.1038/s41439-019-0050-1

10.1136/jmedgenet-2015-103231

10.1002/ana.24551

10.1074/jbc.M110.139493

10.1038/s41598-017-18530-4

10.1042/BSR20150295

10.1007/s000180050327

10.1038/nrdp.2016.80

10.7575/aiac.abcmed.v.6n.1p.1

10.1042/EBC20170098

10.1016/j.cmet.2017.03.009

10.1089/ars.2012.4845

10.1126/science.1230381

10.1042/BSR20150240

10.1152/physrev.1992.72.4.881

10.1074/jbc.M004070200

10.1093/hmg/ddt382

10.1172/JCI4532

10.1080/21623945.2015.1122857

Lidell ME, 2019, Brown Adipose Tissue, 107

10.1073/pnas.95.15.8625

Berg JM, 2015, Biochemistry

10.1111/j.1742-4658.2010.07947.x

10.2174/1389200013338423

10.1074/jbc.M513481200

Bennett MJ, 1993, GeneReviews

10.1016/B978-141603618-0.10031-1

10.1016/B978-0-12-095461-2.00016-3

10.1074/mcp.M113.035600

10.1159/000468650

10.1006/geno.1996.4597

10.1002/pmic.201400617

10.1016/S0021-9258(17)32751-5

10.1016/S0021-9258(18)63508-2

10.1021/ja01105a533

10.1093/nar/27.11.2434

10.1093/toxsci/kfy008

10.1126/science.182.4115.929

10.1073/pnas.87.23.9236

10.1016/0140-6736(90)91413-5

10.1172/JCI114761

10.1016/S0009-8981(02)00182-1

10.1146/annurev-physiol-021115-105045

10.1007/s10545-010-9061-2

10.1046/j.1432-1033.2003.03947.x

10.1016/j.siny.2003.08.002

10.1016/S0960-8966(01)00228-0

10.1006/bbrc.1993.1368

10.1203/00006450-198507000-00006

10.1016/j.spen.2008.05.008

10.1016/S0960-8966(01)00308-X

10.1002/ajmg.a.36803

Moczulski D, 2009, An overview of beta‐oxidation disorders, Postepy Hig Med Dosw, 63, 266

10.1056/NEJMoa025225

10.1007/s10545-010-9076-8

10.1002/jimd.12102

10.1007/s00431-018-03315-2

Yamaguchi S, 2013, Proceedings of the Genetic Testing Symposium and the International Society for Neonatal Screening and Featured presentation at Newborn Screening, Atlanta

10.1159/000295720

10.1007/s10545-017-0085-8

10.1016/S0021-9258(17)42511-7

10.1212/WNL.40.8.1302

10.1016/0960-8966(96)00352-5

10.1016/S0014-5793(00)01815-9

10.1083/jcb.150.1.F5

10.1016/S0006-2952(99)00383-4

10.1007/s10545-014-9700-0

10.1016/j.talanta.2015.02.041

10.1016/j.bbamcr.2008.04.015

10.1093/hmg/ddv074

10.1016/j.cmet.2010.08.002

10.1093/hmg/ddt521

10.1074/jbc.M504460200

10.1086/519219

10.1016/S0006-291X(02)02336-7

10.1093/nar/gkv1003

10.1016/j.cell.2008.06.016

10.1016/j.ajhg.2008.09.009

10.1093/hmg/ddv058

10.1016/j.jmb.2011.10.012

10.1016/j.ajhg.2009.04.020

10.1016/j.ymgme.2015.06.008

10.3390/cells7060046

10.1038/nmeth0410-248

10.1016/S0168-9525(00)02024-2

10.1007/s10545-010-9236-x

10.1016/S0021-9258(17)36781-9

10.1542/peds.70.4.532

10.1016/j.ymgme.2009.11.005

10.1002/mus.21758

10.1177/2326409817707771

Pfeffer G, 2012, Treatment for mitochondrial disorders, Cochrane Database Syst Rev, CD004426

10.1016/j.ymgme.2011.09.030

10.1016/j.ymgme.2006.06.004

10.1007/8904_2016_561

10.1007/s10545-010-9188-1

10.21037/atm.2018.10.57

10.1016/j.plefa.2003.06.003

10.1016/j.ymgme.2015.12.004

10.1007/s40142-017-0125-6

10.1016/j.jns.2008.11.008

10.3390/jcm6050050

10.1016/j.ymgme.2011.10.009

10.1016/j.ymgme.2012.09.007

10.1016/j.bbagen.2009.07.008

10.1016/j.mito.2007.07.002

10.1111/acel.12130

10.1126/science.1244360

10.1038/s41467-017-00489-5

10.1042/BST20180134

10.1038/s10038-018-0528-6

10.1016/j.cmet.2011.04.011

10.1093/hmg/ddt603

10.1007/s12035-018-1368-2

10.1016/j.pnpbp.2008.03.024

10.1212/WNL.0000000000000118

10.1016/j.ymgmr.2019.100496

10.1016/0006-291X(92)90501-B