Numerical Analysis of Capacitive Deionization Process Using Activated Carbon Electrodes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anderson, M. A., Cudero, A. L., & Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta, 55(12), 3845–3856. https://doi.org/10.1016/j.electacta.2010.02.012
Bakhia, T., Khamizov, R. K., Bavizhev, Z. R., Bavizhev, M. D., Konov, M. A., Kozlov, D. A., & Tkachev, A. G. (2020). Composite graphene-containing porous materials from carbon for capacitive deionization of water. Molecules, 25(11), 20. https://doi.org/10.3390/molecules25112620
Biesheuvel, P. M., Porada, S., Levi, M., & Bazant, M. Z. (2014). Attractive forces in microporous carbon electrodes for capacitive deionization. Journal of Solid State Electrochemistry, 18(5), 1365–1376. https://doi.org/10.1007/s10008-014-2383-5
Dykstra, J. E., Zhao, R., Biesheuvel, P. M., & van der Wal, A. (2016). Resistance identification and rational process design in capacitive deionization. Water Research, 88, 358–370. https://doi.org/10.1016/j.watres.2015.10.006
Folaranmi, G., Bechelany, M., Sistat, P., Cretin, M., & Zaviska, F. (2020). Comparative investigation of activated carbon electrode and a novel activated carbon/graphene oxide composite electrode for an enhanced capacitive deionization. Materials, 13(22), 1–14. https://doi.org/10.3390/ma13225185
Guyes, E. N., Shocron, A. N., Simanovski, A., Biesheuvel, P. M., & Suss, M. E. (2017). A one-dimensional model for water desalination by flow-through electrode capacitive deionization. Desalination, 415, 8–13. https://doi.org/10.1016/j.desal.2017.03.013
Hasseler, T. D., Ramachandran, A., Tarpeh, W. A., Stadermann, M., & Santiago, J. G. (2020). Process design tools and techno-economic analysis for capacitive deionization. Water Research, 183, 116034. https://doi.org/10.1016/j.watres.2020.116034
Hou, C. H., Huang, C. Y., & Hu, C. Y. (2013). Application of capacitive deionization technology to the removal of sodium chloride from aqueous solutions. International Journal of Environmental Science and Technology, 10(4), 753–760. https://doi.org/10.1007/s13762-013-0232-1
Li, H., Lu, T., Pan, L., Zhang, Y., & Sun, Z. (2009). Electrosorption behavior of graphene in NaCl solutions. Journal of Materials Chemistry, 19(37), 6773–6779. https://doi.org/10.1039/b907703k
Li, Y., Stewart, T. C., & Tang, H. L. (2018). A comparative study on electrosorptive rates of metal ions in capacitive deionization. Journal of Water Process Engineering, 26, 257–263. https://doi.org/10.1016/j.jwpe.2018.10.021
Murphy, G. W., & Caudle, D. D. (1967). Mathematical theory of electrochemical demineralization in flowing systems. Electrochimica Acta, 12(12), 1655–1664. https://doi.org/10.1016/0013-4686(67)80079-3
Nordstrand, J., & Dutta, J. (2019). Dynamic Langmuir model: A simpler approach to modeling capacitive deionization. Journal of Physical Chemistry C, 123(26), 16479–16485. https://doi.org/10.1021/acs.jpcc.9b04198
Nordstrand, J., & Dutta, J. (2021). Flexible modeling and control of capacitive-deionization processes through a linear-state-space dynamic Langmuir model. Npj Clean Water, 4(1), 5. https://doi.org/10.1038/s41545-020-00094-y
Ntakirutimana, S., Tan, W., Anderson, M. A., & Wang, Y. (2020). Editors’ Choice—Review—Activated carbon electrode design: Engineering tradeoff with respect to capacitive deionization performance. Journal of The Electrochemical Society, 167(14), 143501. https://doi.org/10.1149/1945-7111/abbfd7
Oren, Y. (2008). Capacitive delonization (CDI) for desalination and water treatment - Past, present and future (a review). Desalination, 228(1–3), 10–29. https://doi.org/10.1016/j.desal.2007.08.005
Porada, S., Borchardt, L., Oschatz, M., Bryjak, M., Atchison, J. S., Keesman, K. J., Kaskel, S., Biesheuvel, P. M., & Presser, V. (2013a). Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy &Environmental Science, 6(12), 3700–3712. https://doi.org/10.1039/C3EE42209G
Porada, S., Zhao, R., van der Wal, A., Presser, V., & Biesheuvel, P. M. (2013b). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388–1442. https://doi.org/10.1016/j.pmatsci.2013.03.005
Shpigel, N., Levi, M. D., Sigalov, S., Aurbach, D., Daikhin, L., & Presser, V. (2016). Novel in situ multiharmonic EQCM-D approach to characterize complex carbon pore architectures for capacitive deionization of brackish water. Journal of Physics-Condensed Matter, 28(11), 14. https://doi.org/10.1088/0953-8984/28/11/114001
Singh, K., Porada, S., de Gier, H. D., Biesheuvel, P. M., & de Smet, L. (2019). Timeline on the application of intercalation materials in capacitive deionization. Desalination, 455, 115–134. https://doi.org/10.1016/j.desal.2018.12.015
Suss, M. E., Porada, S., Sun, X., Biesheuvel, P. M., Yoon, J., & Presser, V. (2015). Water desalination via capacitive deionization: What is it and what can we expect from it? Energy & Environmental Science, 8(8), 2296–2319. https://doi.org/10.1039/c5ee00519a
Tang, W., Kovalsky, P., Cao, B., & Waite, T. D. (2016). Investigation of fluoride removal from low-salinity groundwater by single-pass constant-voltage capacitive deionization. Water Research, 99, 112–121. https://doi.org/10.1016/j.watres.2016.04.047
Welgemoed, T. J., & Schutte, C. F. (2005). Capacitive Delonization Technology (TM): An alternative desalination solution. Desalination, 183(1–3), 327–340. https://doi.org/10.1016/j.desal.2005.02.054
Zhang, W., Mossad, M., & Zou, L. (2013). A study of the long-term operation of capacitive deionisation in inland brackish water desalination. Desalination, 320, 80–85. https://doi.org/10.1016/j.desal.2013.04.010