Extracellular Proteins in Pea Root Tip and Border Cell Exudates

Oxford University Press (OUP) - Tập 143 Số 2 - Trang 773-783 - 2007
Fushi Wen1, Hans D. VanEtten1, George Tsaprailis1, Martha C. Hawes1
1Department of Plant Sciences, Division of Plant Pathology and Microbiology (F.W., H.D.V., M.C.H.) and Center for Toxicology, Pharmacy 205 (G.T.), University of Arizona, Tucson, Arizona 85721

Tóm tắt

AbstractNewly generated plant tissue is inherently sensitive to infection. Yet, when pea (Pisum sativum) roots are inoculated with the pea pathogen, Nectria haematococca, most newly generated root tips remain uninfected even though most roots develop lesions just behind the tip in the region of elongation. The resistance mechanism is unknown but is correlated spatially with the presence of border cells on the cap periphery. Previously, an array of >100 extracellular proteins was found to be released while border cell separation proceeds. Here we report that protein secretion from pea root caps is induced in correlation with border cell separation. When this root cap secretome was proteolytically degraded during inoculation of pea roots with N. haematococca, the percentage of infected root tips increased from 4% ± 3% to 100%. In control experiments, protease treatment of conidia or roots had no effect on growth and development of the fungus or the plant. A complex of >100 extracellular proteins was confirmed, by multidimensional protein identification technology, to comprise the root cap secretome. In addition to defense-related and signaling enzymes known to be present in the plant apoplast were ribosomal proteins, 14-3-3 proteins, and others typically associated with intracellular localization but recently shown to be extracellular components of microbial biofilms. We conclude that the root cap, long known to release a high molecular weight polysaccharide mucilage and thousands of living cells into the incipient rhizosphere, also secretes a complex mixture of proteins that appear to function in protection of the root tip from infection.

Từ khóa


Tài liệu tham khảo

1996, Annu Rev Phytopathol, 34, 325, 10.1146/annurev.phyto.34.1.325

1969, Annu Rev Phytopathol, 7, 171, 10.1146/annurev.py.07.090169.001131

2006, J Proteome Res, 5, 963, 10.1021/pr050471q

2003, Proteomics, 3, 1270, 10.1002/pmic.200300447

2002, Proteomics, 2, 1156, 10.1002/1615-9861(200209)2:9<1156::AID-PROT1156>3.0.CO;2-4

1975

2006, Annu Rev Plant Biol, 57, 233, 10.1146/annurev.arplant.57.032905.105159

1996, Plant Physiol, 112, 3, 10.1104/pp.112.1.3

2006, Plant Soil, 286, 357, 10.1007/s11104-006-9048-9

1981, Annu Rev Plant Physiol, 32, 407, 10.1146/annurev.pp.32.060181.002203

2006, Proteomics, 6, 301, 10.1002/pmic.200500046

2005, BMC Microbiol, 5, 58, 10.1186/1471-2180-5-58

2004, J Mol Biol, 3, 783

2003, Nature Rev Neurosci, 4, 752, 10.1038/nrg1159-c2

1996, Proc Natl Acad Sci USA, 93, 12053, 10.1073/pnas.93.22.12053

2005, FEBS J, 272, 4960, 10.1111/j.1742-4658.2005.04906.x

1990, Annu Rev Phytopathol, 28, 113, 10.1146/annurev.py.28.090190.000553

1976, Anal Biochem, 72, 248, 10.1016/0003-2697(76)90527-3

1992, Plant J, 2, 815, 10.1111/j.1365-313X.1992.tb00151.x

1995, Plant Physiol, 109, 457, 10.1104/pp.109.2.457

1998, Plant Physiol, 118, 1223, 10.1104/pp.118.4.1223

1994, Plant Cell, 6, 1703, 10.2307/3869902

1986

1998, Annu Rev Plant Physiol Plant Mol Biol, 49, 281, 10.1146/annurev.arplant.49.1.281

2004

2005, Proteomics, 5, 4894, 10.1002/pmic.200500047

2005, Science, 308, 1463, 10.1126/science.1108661

1986

1896

1990, Plant Cell, 2, 51

1994, J Am Soc Mass Spectrom, 5, 976, 10.1016/1044-0305(94)80016-2

1984, Am J Bot, 7, 1308

2004, Physiol Plant, 120, 173, 10.1111/j.0031-9317.2004.0239.x

1999, Plant Physiol, 121, 829, 10.1104/pp.121.3.829

2006, BMC Microbiol, 6, 65, 10.1186/1471-2180-6-65

2005, J Invest Dermatol, 124, 170, 10.1111/j.0022-202X.2004.23521.x

2002, Mol Plant-Microbe Interact, 15, 1128, 10.1094/MPMI.2002.15.11.1128

2005, Plant Physiol, 137, 1363, 10.1104/pp.104.056366

2003, J Plant Growth Regul, 21, 352

1997

1998, Annu Rev Phytopathol, 36, 311, 10.1146/annurev.phyto.36.1.311

2000, Trends Plant Sci, 5, 128, 10.1016/S1360-1385(00)01556-9

1990, Plant Physiol, 94, 1855, 10.1104/pp.94.4.1855

1986, Am J Bot, 73, 1466, 10.1002/j.1537-2197.1986.tb10892.x

1982, Physiol Plant Pathol, 20, 137, 10.1016/0048-4059(82)90079-0

2003, Ecology, 84, 858, 10.1890/0012-9658(2003)084[0858:MSARCR]2.0.CO;2

2003, Plant Cell Rep, 21, 829, 10.1007/s00299-003-0591-z

2001, Mol Plant-Microbe Interact, 14, 775, 10.1094/MPMI.2001.14.6.775

1920, Am J Bot, 7, 371, 10.1002/j.1537-2197.1920.tb05592.x

1919, Bot Gaz, 68, 460, 10.1086/332584

1999, Plant Physiol, 120, 665, 10.1104/pp.120.3.665

2001, Plant Physiol, 125, 1978, 10.1104/pp.125.4.1978

2002, Plant Physiol, 130, 1102, 10.1104/pp.011569

1999, New Phytol, 141, 497, 10.1046/j.1469-8137.1999.00365.x

2002, Plant Physiol, 130, 164, 10.1104/pp.000794

2004, Eur J Biochem, 271, 4825, 10.1111/j.1432-1033.2004.04448.x

1967, Protoplasma, 64, 49, 10.1007/BF01257381

2002

2000, Curr Opin Plant Biol, 3, 400, 10.1016/S1369-5266(00)00103-5

1942, Soil Sci, 54, 353, 10.1097/00010694-194211000-00011

2003, J Exp Bot, 10, 2013

1995, Plant Physiol, 107, 1481, 10.1104/pp.107.4.1481

2000, Mol Plant-Microbe Interact, 13, 637, 10.1094/MPMI.2000.13.6.637

2004, Microbiol Mol Biol Rev, 68, 207, 10.1128/MMBR.68.2.207-233.2004

1994, Can J Bot, 72, 1605, 10.1139/b94-198

2003, Plant Cell, 15, 1399, 10.1105/tpc.010611

1999, Nat Biotechnol, 38, 12499

2001, Nat Biotechnol, 19, 242, 10.1038/85686

1996, Mol Plant Microbe Interact, 9, 793, 10.1094/MPMI-9-0793

1999, Plant Cell, 11, 1129, 10.1105/tpc.11.6.1129

1994, Protoplasma, 180, 169, 10.1007/BF01507853

2006, Proteomics, 6, 4

1995, Anal Chem, 67, 1426, 10.1021/ac00104a020

2006

2006, Plant Physiol, 140, 311, 10.1104/pp.105.070219

1997, Plant Physiol, 115, 1691, 10.1104/pp.115.4.1691