JNK Isoforms Are Involved in the Control of Adult Hippocampal Neurogenesis in Mice, Both in Physiological Conditions and in an Experimental Model of Temporal Lobe Epilepsy

Molecular Neurobiology - Tập 56 - Trang 5856-5865 - 2019
Rubén D. Castro-Torres1,2,3, Jon Landa1, Marina Rabaza1, Oriol Busquets2,4,5,6, Jordi Olloquequi7, Miren Ettcheto2,4,5,6, Carlos Beas-Zarate3, Jaume Folch4,5, Antoni Camins2,5,6, Carme Auladell1,5,6, Ester Verdaguer1,5,6
1Departament de Biologia Cellular, Fisiologia I Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
2Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona, Spain
3Departamento de Biología Celular y Molecular, Laboratorio de Regeneración Neural, C.U.C.B.A, Universidad de Guadalajara, Jalisco, Mexico
4Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Tarragona, Spain
5Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
6Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
7Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile

Tóm tắt

Neurogenesis in the adult dentate gyrus (DG) of the hippocampus allows the continuous generation of new neurons. This cellular process can be disturbed under specific environmental conditions, such as epileptic seizures; however, the underlying mechanisms responsible for their control remain largely unknown. Although different studies have linked the JNK (c-Jun-N-terminal-kinase) activity with the regulation of cell proliferation and differentiation, the specific function of JNK in controlling adult hippocampal neurogenesis is not well known. The purpose of this study was to analyze the role of JNK isoforms (JNK1/JNK2/JNK3) in adult-hippocampal neurogenesis. To achieve this goal, we used JNK-knockout mice (Jnk1−/−, Jnk2−/−, and Jnk3−/−), untreated and treated with intraperitoneal injections of kainic acid (KA), as an experimental model of epilepsy. In each condition, we identified cell subpopulations at different stages of neuronal maturation by immunohistochemical specific markers. In physiological conditions, we evidenced that JNK1 and JNK3 control the levels of one subtype of early progenitor cells (GFAP+/Sox2+) but not the GFAP+/Nestin+ cell subtype. Moreover, the absence of JNK1 induces an increase of immature neurons (Doublecortin+; PSA-NCAM+ cells) compared with wild-type (WT). On the other hand, Jnk1−/− and Jnk3−/− mice showed an increased capacity to maintain hippocampal homeostasis, since calbindin immunoreactivity is higher than in WT. An important fact is that, after KA injection, Jnk1−/− and Jnk3−/− mice show no increase in the different neurogenic cell subpopulation analyzed, in contrast to what occurs in WT and Jnk2−/− mice. All these data support that JNK isoforms are involved in the adult neurogenesis control.

Tài liệu tham khảo

Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103:239–252 Gupta S, Barrett T, Whitmarsh a J et al (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J 15:2760–2770 Ip YT, Davis RJ (1998) Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Curr Opin Cell Biol 10:205–219 Karin M (1995) The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270:16483–16486. https://doi.org/10.1098/rstb.1996.0008 Bogoyevitch MA, Kobe B (2006) Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev 70:1061–1095. https://doi.org/10.1128/MMBR.00025-06 Gkouveris I, Nikitakis NG (2017) Role of JNK signaling in oral cancer: a mini review. Tumor Biol 39:101042831771165 Dong C, Yang DD, Wysk M, Whitmarsh AJ, Davis RJ, Flavell RA (1998) Defective T cell differentiation in the absence of Jnk1. Science 282:2092–2095. https://doi.org/10.1126/science.282.5396.2092 Yang DD, Conze D, Whitmarsh AJ et al (1998) Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity 9:575–585 Yang DD, Kuan CY, Whitmarsh a J et al (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389:865–870. https://doi.org/10.1038/39899 Zeke A, Misheva M, Reményi A, Bogoyevitch MA (2016) JNK signaling: regulation and functions based on complex protein-protein partnerships. Microbiol Mol Biol Rev 80:793–835. https://doi.org/10.1128/MMBR.00043-14 Kuan CY, Yang DD, Samanta Roy DR et al (1999) The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22:667–676 Sabapathy K (2012) Role of the JNK pathway in human diseases. Prog Mol Biol Transl Sci 106:145–169 Conze D, Krahl T, Kennedy N, Weiss L, Lumsden J, Hess P, Flavell RA, le Gros G et al (2002) c-Jun NH(2)-terminal kinase (JNK)1 and JNK2 have distinct roles in CD8(+) T cell activation. J Exp Med 195:811–823. https://doi.org/10.1084/JEM.20011508 Myers AK, Meechan DW, Adney DR, Tucker ES (2014) Cortical interneurons require Jnk1 to enter and navigate the developing cerebral cortex. J Neurosci 34:7787–7801. https://doi.org/10.1523/JNEUROSCI.4695-13.2014 Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS (2002) A central role for JNK in obesity and insulin resistance. Nature 420:333–336. https://doi.org/10.1038/nature01137 Mohammad H, Marchisella F, Ortega-Martinez S, Hollos P, Eerola K, Komulainen E, Kulesskaya N, Freemantle E et al (2018) JNK1 controls adult hippocampal neurogenesis and imposes cell-autonomous control of anxiety behaviour from the neurogenic niche. Mol Psychiatry 23:487. https://doi.org/10.1038/mp.2017.21 Kuan C-Y, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, Bao J, Banasiak KJ et al (2003) A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci U S A 100:15184–15189. https://doi.org/10.1073/pnas.2336254100 Li QM, Tep C, Yune TY, Zhou XZ, Uchida T, Lu KP, Yoon SO (2007) Opposite regulation of oligodendrocyte apoptosis by JNK3 and Pin1 after spinal cord injury. J Neurosci 27:8395–8404. https://doi.org/10.1523/JNEUROSCI.2478-07.2007 de Lemos L, Junyent F, Camins A, Castro-Torres RD, Folch J, Olloquequi J, Beas-Zarate C, Verdaguer E et al (2017) Neuroprotective effects of the absence of JNK1 or JNK3 isoforms on kainic acid-induced temporal lobe epilepsy-like symptoms. Mol Neurobiol. https://doi.org/10.1007/s12035-017-0669-1 De Lemos L, Junyent F, Verdaguer E et al (2010) Differences in activation of ERK1/2 and p38 kinase in Jnk3 null mice following KA treatment. J Neurochem 114:1315–1322. https://doi.org/10.1111/j.1471-4159.2010.06853.x Raijmakers M, Clynen E, Smisdom N, Nelissen S, Brône B, Rigo JM, Hoogland G, Swijsen A (2016) Experimental febrile seizures increase dendritic complexity of newborn dentate granule cells. Epilepsia 57:717–726. https://doi.org/10.1111/epi.13357 Ben-Ari Y, Cossart R (2000) Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci 23:580–587. https://doi.org/10.1016/S0166-2236(00)01659-3 Parent JM (2003) Injury-induced neurogenesis in the adult mammalian brain. Neurosci 9:261–272. https://doi.org/10.1177/1073858403252680 Shetty AK, Hattiangady B, Rao MS, Shuai B (2012) Neurogenesis response of middle-aged hippocampus to acute seizure activity. PLoS One 7:e43286. https://doi.org/10.1371/journal.pone.0043286 Sakurai M, Suzuki H, Tomita N, Sunden Y, Shimada A, Miyata H, Morita T (2017) Enhanced neurogenesis and possible synaptic reorganization in the piriform cortex of adult rat following kainic acid-induced status epilepticus. Neuropathology 38:135–143. https://doi.org/10.1111/neup.12445 Walton RM (2012) Postnatal neurogenesis. Vet Pathol 49:155–165. https://doi.org/10.1177/0300985811414035 Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol 7:a018812. https://doi.org/10.1101/cshperspect.a018812 Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660. https://doi.org/10.1016/j.cell.2008.01.033 Braun SMG, Jessberger S (2014) Review: adult neurogenesis and its role in neuropsychiatric disease, brain repair and normal brain function. Neuropathol Appl Neurobiol 40:3–12. https://doi.org/10.1111/nan.12107 Brandt MD, Jessberger S, Steiner B, Kronenberg G, Reuter K, Bick-Sander A, Behrens W, Kempermann G (2003) Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci 24:603–613. https://doi.org/10.1016/S1044-7431(03)00207-0 Junyent F, Utrera J, Romero R, Pallàs M, Camins A, Duque D, Auladell C (2009) Prevention of epilepsy by taurine treatments in mice experimental model. J Neurosci Res 87:1500–1508. https://doi.org/10.1002/jnr.21950 Paxinos G, Franlin K (2012) The mouse brain in stereotaxic coordinates, 4th edn. Academic Press Zhang J, Jiao J (2015) Molecular biomarkers for embryonic and adult neural stem cell and neurogenesis. Biomed Res Int 2015:727542–727514. https://doi.org/10.1155/2015/727542 Brazel CY, Limke TL, Osborne JK, Miura T, Cai J, Pevny L, Rao MS (2005) Sox2 expression defines a heterogeneous population of neurosphere-forming cells in the adult murine brain. Aging Cell 4:197–207. https://doi.org/10.1111/j.1474-9726.2005.00158.x Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J et al (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14. https://doi.org/10.1111/j.1460-9568.2004.03813.x Gascon E, Vutskits L, Kiss JZ (2010) The role of PSA-NCAM in adult neurogenesis. Springer, New York, pp. 127–136 Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development 116:201–211 Seki T, Arai Y (1993) Distribution and possible roles of the highly polysialylated neural cell adhesion molecule (NCAM-H) in the developing and adult central nervous system. Neurosci Res 17:265–290 Domínguez MI, Blasco-Ibáñez JM, Crespo C et al (2003) Calretinin/PSA-NCAM immunoreactive granule cells after hippocampal damage produced by kainic acid and DEDTC treatment in mouse. Brain Res 966:206–217. https://doi.org/10.1016/S0006-8993(02)04164-1 Reiner O, Gdalyahu A, Ghosh I et al (2004) DCX’s phosphorylation by not just another kinase (JNK). Cell Cycle 3:747–751 Pino A, Fumagalli G, Bifari F, Decimo I (2017) New neurons in adult brain: distribution, molecular mechanisms and therapies. Biochem Pharmacol 141:4–22. https://doi.org/10.1016/j.bcp.2017.07.003 Iyengar SS, LaFrancois JJ, Friedman D et al (2015) Suppression of adult neurogenesis increases the acute effects of kainic acid. Exp Neurol 264:135–149. https://doi.org/10.1016/j.expneurol.2014.11.009 Cho K-O, Lybrand ZR, Ito N, Brulet R, Tafacory F, Zhang L, Good L, Ure K et al (2015) Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat Commun 6:6606. https://doi.org/10.1038/ncomms7606 Gdalyahu A, Ghosh I, Levy T, Sapir T, Sapoznik S, Fishler Y, Azoulai D, Reiner O (2004) DCX, a new mediator of the JNK pathway. EMBO J 23:823–832. https://doi.org/10.1038/sj.emboj.7600079 Todkar K, Scotti AL, Schwaller B (2012) Absence of the calcium-binding protein calretinin, not of calbindin D-28k, causes a permanent impairment of murine adult hippocampal neurogenesis. Front Mol Neurosci 5(56). https://doi.org/10.3389/fnmol.2012.00056 Coffey ET (2014) Nuclear and cytosolic JNK signalling in neurons. Nat Rev Neurosci 15:285–299. https://doi.org/10.1038/nrn3729 Lledo PM, Somasundaram B, Morton AJ, Emson PC, Mason WT (1992) Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis. Neuron 9:943–954