Shutdown decay of mRNA

Molecular Microbiology - Tập 61 Số 3 - Trang 573-583 - 2006
Ciarán Condon1
1CNRS UPR 9073 (affiliated with Université de Paris 7—Denis Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France

Tóm tắt

SummaryAlthough plasmid‐borne and chromosomal toxin–antitoxin (TA) operons have been known for some time, the recent identification of mRNA as the target of at least two different classes of toxins has led to a dramatic renewal of interest in these systems as mediators of stress responses. Members of the MazF/PemK family, the so‐called mRNA interferases, are ribonucleases that inhibit translation by destroying cellular mRNAs under stress conditions, while the founder member of the RelE family promotes cleavage of mRNAs through the ribosome. Detailed structures of these enzymes, often in complex with their inhibitors, have provided vital clues to their mechanisms of action. The primary role and regulation of these systems has been the subject of some controversy. One model suggests they play a beneficial role by wiping the slate clean and preventing wasteful energy consumption by the translational apparatus during adaptation to stress conditions, while another favours the idea that their main function is programmed cell death. The two models might not be mutually exclusive if a side‐effect of prolonged exposure to toxic RNase activity without de novo synthesis of the inhibitor were a state of dormancy for which we do not yet understand the key to recovery. In this review, I discuss the recent developments in the rapidly expanding field of what I refer to as bacterial shutdown decay.

Từ khóa


Tài liệu tham khảo

10.1073/pnas.93.12.6059

10.1128/JB.186.24.8295-8300.2004

10.1186/gb-2003-4-12-r81

10.1074/jbc.M313833200

10.1046/j.1365-2958.2002.02779.x

10.1007/BF00337764

10.1016/j.tibs.2005.10.004

Cashel M., 1987, Escherichia coli and Salmonella Typhimurium: Cellular and Molecular Biology, 1410

10.1074/jbc.M506220200

10.1046/j.1365-2958.2003.03512.x

10.1111/j.1365-2958.2004.04127.x

10.1073/pnas.251327898

10.1016/S0022-2836(03)00922-7

10.1046/j.1365-2958.2003.03941.x

10.1016/S0960-9822(00)00858-7

10.1006/jmbi.1997.1357

10.1073/pnas.1631248100

10.1016/j.jmb.2005.03.049

Diderichsen B., 1977, Genetics of the relB locus in Escherichia coli, J Bacteriol, 131, 30, 10.1128/jb.131.1.30-33.1977

10.1038/nature04530

10.1074/jbc.274.24.16813

10.1073/pnas.83.10.3116

10.1038/nrmicro1147

10.1002/prot.10457

10.1046/j.1365-2958.1998.00993.x

10.1046/j.1365-2958.2003.03387.x

10.1111/j.1365-2958.2005.04956.x

10.1016/S0969-2126(02)00856-0

10.1107/S0907444901020753

10.1016/S1097-2765(03)00385-X

10.1007/s00438-004-1048-y

10.1128/JB.186.11.3663-3669.2004

10.1046/j.1365-2958.2002.02921.x

10.1016/j.molcel.2005.07.004

10.1016/S1097-2765(03)00097-2

10.1016/j.jmb.2005.12.033

10.1128/JB.188.9.3420-3423.2006

10.1016/j.femsle.2005.09.045

10.1016/j.jmb.2005.12.035

10.1073/pnas.95.11.6067

10.1006/jmbi.1998.2395

10.1016/S0021-9258(19)49831-1

10.1074/jbc.M008832200

10.1128/jb.175.21.6850-6856.1993

10.1016/S0021-9258(19)37644-6

10.1016/j.febslet.2004.05.005

10.1111/j.1365-2958.2006.05027.x

10.1073/pnas.80.15.4784

10.1093/nar/gki201

10.1046/j.1365-2958.2002.03027.x

10.1016/S0092-8674(02)01248-5

10.1111/j.1365-2958.2005.04606.x

10.1038/sj.emboj.7600815

10.1101/gr.617103

10.1111/j.1365-2958.1991.tb01977.x

10.1007/BF02423456

10.1128/JB.183.6.2041-2045.2001

10.1128/JB.185.6.1803-1807.2003

10.1074/jbc.M312805200

10.1016/j.molcel.2005.03.011

10.1038/nsmb911

10.1007/BF00282787

10.1128/jb.170.4.1461-1466.1988

10.1128/jb.174.13.4205-4211.1992

10.1016/S1097-2765(03)00402-7

10.1074/jbc.M314284200

10.1074/jbc.M411811200

10.1074/jbc.M502050200

Zhu L., 2006, Characterization of mRNA interferases from Mycobacterium tuberculosis, J Biol Chem