Predicting Deleterious Amino Acid Substitutions

Genome Research - Tập 11 Số 5 - Trang 863-874 - 2001
Pauline C. Ng1,2, Steven Henikoff2,3
1Department of Bioengineering, University of Washington, Seattle, Washington 98105, USA;
2Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
3Howard Hughes Medical Institute, Seattle, Washington 98109, USA

Tóm tắt

Many missense substitutions are identified in single nucleotide polymorphism (SNP) data and large-scale random mutagenesis projects. Each amino acid substitution potentially affects protein function. We have constructed a tool that uses sequence homology to predict whether a substitution affects protein function. SIFT, whichsorts intolerant fromtolerant substitutions, classifies substitutions as tolerated or deleterious. A higher proportion of substitutions predicted to be deleterious by SIFT gives an affected phenotype than substitutions predicted to be deleterious by substitution scoring matrices in three test cases. UsingSIFT before mutagenesis studies could reduce the number of functional assays required and yield a higher proportion of affected phenotypes. SIFT may be used to identify plausible disease candidates among the SNPs that cause missense substitutions.

Từ khóa


Tài liệu tham khảo

10.1016/0022-2836(91)90193-A

10.1093/nar/25.17.3389

10.1093/nar/28.1.45

10.1038/73317

Bentley, 2000, Targeted recovery of mutations in Drosophila., Genetics, 156, 1169, 10.1093/genetics/156.3.1169

Bowie, 1989, Identifying determinants of folding and activity for a protein of unknown structure., Biochemistry, 86, 2152

10.1093/nar/28.1.356

10.1038/10290

10.1038/73557

10.1006/jmbi.1993.1598

Climie, 1990, Saturated site-directed mutagenesis of thymidylate synthase., J. Biol. Chem., 265, 18776, 10.1016/S0021-9258(17)30579-3

10.1093/nar/26.1.285

10.1126/science.7792597

10.1021/bi00098a021

10.1073/pnas.84.13.4355

10.1093/nar/19.23.6565

10.1073/pnas.89.22.10915

10.1016/0022-2836(94)90032-9

10.1093/bioinformatics/12.2.135

Huang, 1992, Amino acid substitution in the lactose carrier protein with the use of amber suppressors., J. Bact., 174, 5436, 10.1128/jb.174.16.5436-5441.1992

10.1038/79981

Kao, 1980, Baseplate protein of bacteriophage T4 with both structural and lytic functions., J. Virol., 34, 95, 10.1128/jvi.34.1.95-103.1980

10.1126/science.274.5287.536

10.1126/science.271.5253.1247

10.1038/340397a0

10.1006/jmbi.1994.1458

10.1104/pp.123.2.439

10.1038/nsb0296-133

Mosig, 1989, Functional relationships and structural determinants of two bacteriophage T4 lysozymes: A soluble (gene e) and a baseplate-associated (gene 5) protein., New Biol., 1, 171

Nakagawa, 1985, Isolation and characterization of the bacteriophage T4 tail-associated lysozyme., J. Virol., 54, 460, 10.1128/jvi.54.2.460-466.1985

Nevill-Manning, 1997, Enumerating and ranking discrete motifs., ISMB, 5, 202

Pace, 1997, Lac repressor genetic map in real space., TIBS, 22, 334

10.1006/jmbi.2000.4018

10.1016/0022-2836(91)90738-R

Sauder, 2000, Genomic fold assignment and rational modeling of proteins of biological interest., ISMB, 8, 296

10.1093/nar/18.20.6097

10.1016/0022-2836(86)90165-8

10.1093/bioinformatics/12.4.327

10.1073/pnas.87.2.826

10.1006/jmbi.1996.0479

10.1016/S0168-9525(00)01988-0

Tomasselli, 1990, Proteases from human immunodeficiency virus and avian myeloblastosis virus show distinct specificities in hydrolysis of multidomain protein substrates., J. Virol., 64, 3157, 10.1128/jvi.64.7.3157-3161.1990

10.1126/science.2548279