Proof-Theoretic Semantics and Inquisitive Logic
Tóm tắt
Prawitz (1971) conjectured that proof-theoretic validity offers a semantics for intuitionistic logic. This conjecture has recently been proven false by Piecha and Schroeder-Heister (2019). This article resolves one of the questions left open by this recent result by showing the extensional alignment of proof-theoretic validity and general inquisitive logic. General inquisitive logic is a generalisation of inquisitive semantics, a uniform semantics for questions and assertions. The paper further defines a notion of quasi-proof-theoretic validity by restricting proof-theoretic validity to allow double negation elimination for atomic formulas and proves the extensional alignment of quasi-proof-theoretic validity and inquisitive logic.
Tài liệu tham khảo
Ciardelli, I., Groenendijk, J., & Roelofsen, F. (2018). Inquisitive semantics oxford surveys in semantics and pragmatics. Oxford: Oxford University Press.
Ciardelli, I., & Roelofsen, F. (2011). Inquisitive logic. Journal of Philosophical Logic, 40(1), 55–94.
Dummett, M. (1991). The logical basis of metaphysics. Cambridge: Harvard University Press.
Gentzen, G. (1935). Untersuchungen über das logische schließen. Mathematische Zeitschrift, 39, 176–210, 405–431.
Groenendijk, J., & Stokhof, M.J.B. (1984). Studies on the Semantics of Questions and the Pragmatics of Answers. PhD thesis.
Karttunen, L., & Peters, S. (1980). Interrogative quantifiers. Time, tense, and quantifiers, 83, 181–205.
Kleene, S.C. (1952). Introduction to metamathematics Vol. 483. New York: van Nostrand.
Kolmogorov, A.N. (1932). Zur Deutung Der Intuitionistischen Logik. Mathematische zeitschrift, 35, 58–65. Trans. by paolo mancosu as on the interpretation of intuitionistic logic (New York: Oxford University Press, 1998).
Maksimova, L. (1986). On maximal intermediate logics with the disjunction property. Studia Logica, 45, 69–75.
Miglioli, P., & et al. (1989). Some results on intermediate constructive logics. Notre Dame Journal of Formal Logic, 30(4), 543–562.
Piecha, T. (2016). Completeness in Proof-Theoretic semantics. In Piecha, T., & Schroeder-Heister, P. (Eds.) Advances in proof-theoretic semantics (pp. 231–251). Cham: Springer International Publishing.
Piecha, T., de Campos Sanz, W., & Schroeder-Heister, P. (2015). Failure of completeness in Proof-Theoretic semantics. Journal of Philosophical Logic, 44(3), 321–335.
Piecha, T., & Schroeder-Heister, P. (2019). Incompleteness of intuitionistic propositional logic with respect to Proof-Theoretic semantics. Studia logica, 107(1), 233–246.
Prawitz, D. (1971). Ideas and results in proof theory. In Fenstad, J.E. (Ed.) Proceedings of the second scandinavian logic symposium. Studies in logic and the foundations of mathematics, (Vol. 63 pp. 235–307): Elsevier.
Prawitz, D. (1973). Towards A Foundation of A General Proof Theory. In Suppes, P., & et al. (Eds.) Proceedings of the Fourth International Congress for Logic, Methodology and Philosophy of Science, Bucharest, 1971. Studies in Logic and the Foundations of Mathematics Supplement C, (Vol. 74 pp. 225–250): Elsevier.
Punčochář, V. (2016). A generalization of inquisitive semantics. J. Philos. Logic, 45(4), 399–428.
Schroeder-Heister, P. (1984). A natural extension of natural deduction. J. Symbolic Logic, 49(4), 1284–1300.
Schroeder-Heister, P. (2006). Validity Concepts in Proof-theoretic Semantics. Synthese, 148(3), 525–571.
Schroeder-Heister, P. (2018). Proof-Theoretic Semantics. In Zalta, E.N. (Ed.) The stanford encyclopedia of philosophy. Spring 2018. Metaphysics Research Lab: Stanford University.
Stalnaker, R.C. (1976). Possible worlds. Noûs, 10(1), 65–75.
Troelstra, A.S., & van Dalen, D. (1988). Constructivism in mathematics. An introduction Vol. 2. Amsterdam: Elsevier.
Troelstra, A.S., & Schwichtenberg, H. (2000). Basic proof theory. Second. Vol. 43 Cambridge tracts in theoretical computer science. Cambridge: Cambridge University Press.