Is the transition from chemistry to biology a mystery?

Journal of Systems Chemistry - Tập 1 - Trang 1-11 - 2010
Hans Kuhn1
1Director Emeritus of the Department Molecular Systems Assembly, Max-Planck-Institute for Biophysical Chemistry, (Karl Friedrich Bonhoeffer Institute), Goettingen-Nikolausberg, Germany

Tóm tắt

Today most chemists think that the answer to how life on earth emerged is still unknown. They assume a gap between chemistry and biology that is still unbridged. For chemists, understanding the origin of life requires the experimental modeling of a process that bridges this gap. They will not consider the problem solved before they are able to perform such tasks. No gap appears when we are pursuing a less ambitious goal, namely, to present a sequence of hypothetical processes that lead to an apparatus with the basic structure and fundamental feature of the genetic apparatus of biosystems but strongly simplified. The modeled apparatus has the basic machinery of living entities. Its fundamental feature is Darwinian behavior. Living individuals have the power to evolve toward ever increasing complexity and intricacy if appropriate conditions are given. The task to understand life's origin as a rational process is closely related to the earlier attempts of the present author to design and construct supra-molecular machines. The skill of the experimentalist has to be replaced by the presence of very particular conditions given by chance in a very particular location. The resulting apparatus has a distinct basic structure and function. The essence of what happens is inevitable, not accidental. Thus the emergence of life is assumed to be described by a distinct theory. Today's great challenge is experimentally investigating chemical systems with the goal of creating artificial chemical life and the given theory provides a powerful stimulus. Life, from the perspective of physics, is the living state of matter and this view calls for a theory describing the fundamental requirements for the appearance of such a living state of matter (on the early earth and in the universe). The approach given here is an attempt in this direction. According to that approach the appearance of an entity with Darwinian behavior is instantaneous and linked with the creation of matter that carries information. Thus, Information (measured in bits according to Shannon) takes a meaning with that instant, the appearance of the first entity that evolves by multiplication, variation, selection and keeps that meaning during the entire evolution of the living (Information carrying) state of matter. Another consequence of this initial event is a spontaneous symmetry breaking due to the equal probabilities that the oligomer starting the process is right handed or left handed.

Tài liệu tham khảo

Wigner EP: Symmetries and reflections. In Scientific essays of Eugene P. Wigner. Bloomington: Indiana University Press; 1967:200. Prigogine I, Glansdorff P: Non-equilibrium stability theory. Physica 1970, 46: 344–366. 10.1016/0031-8914(70)90010-8 Eigen M: Selforganization of matter and the evolution of biological macro-molecules. Naturwiss 1971, 58: 465–523. 10.1007/BF00623322 Pross A: Seeking the chemical roots of Darwinism: bridging between chemistry and biology. Chemistry 2009, 15: 8374–8381. 10.1002/chem.200900805 Kauffman SA: Investigations. Oxford: Oxford University Press; 2000. Whitesides GM: Revolutions in chemistry. Chem Eng News 2007, 85: 12–17. Wächtershäuser G: The origin of life and its methodological challenge. J theor Biol 1997, 187: 483–494. 10.1006/jtbi.1996.0383 Kuhn H: Selforganization of molecular systems and evolution of the genetic apparatus. Angew Chem Int Ed Engl 1972, 11: 798–820. 10.1002/anie.197207981 Kuhn H: Model consideration for the origin of life. Environmental structure as stimulus for the evolution of chemical systems. Naturwissenschaften 1976, 63: 68–80. 10.1007/BF00622405 Kuhn H, Waser J: Molecular self-organization and the origin of life. Angew Chem Int Ed Engl 1981, 20: 500–520. 10.1002/anie.198105001 Kuhn H, Waser J: Self organization of matter and early evolution of life. In Biophysics. Edited by: Hoppe W, Lohmann W, Markl H, Ziegler H. Berlin: Springer-Verlag; 1983:830–874. Kuhn H: Origin of life and physics: diversified microstructure-inducement to form information carrying and knowledge-accumulating systems. IBM Res Develop 1988, 32: 37–46. 10.1147/rd.321.0037 Kuhn H, Waser J: A model of the origin of life and perspectives in supramolecular engineering. In Lock-and-key principle. Edited by: Behr J-P. Chichester: Wiley; 1994:247–306. Kuhn C: Computer-modeling origin of a simple genetic apparatus. PNAS 2001, 98: 8620–8625. 10.1073/pnas.141379398 Kuhn H, Kuhn C: Diversified world: drive of life's origin?! Angew Chem Int Ed Engl 2003, 42: 262–266. 10.1002/anie.200390098 Kuhn C: A computer-glimpse of the origin of life. J Biol Phys 2005, 31: 571–585. 10.1007/s10867-005-6163-4 Kuhn H: Origin of life-symmetry breaking in the universe: emergence of homochirality. Current Opinion in Colloid and Interface Science 2008, 13: 3–11. 10.1016/j.cocis.2007.08.008 Kuhn H, Waser J: Hypothesis: on the origin of the genetic code. FEBS letters 1994, 352: 259–264. 10.1016/0014-5793(94)00974-0 Lincoln TA, Joyce GF: Self-sustained Replication of an RNA Enzyme. Science 2000, 323: 1229–1232. 10.1126/science.1167856 Bolli M, Micura R, Eschenmoser A: Pyranosyl-RNA: chiro-selective selfassembly of base sequences by ligative oligomerization of tetranucleotide-2',3'-cyclophosphates with a commentary concerning the origin of bio-molecular homochirality. Chem Bio 1997, 4: 309–320. 10.1016/S1074-5521(97)90074-0 Powner MW, Gerland B, Sutherland JD: Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 2009, 459: 239–242. 10.1038/nature08013 Luther A, Brandsch R, von Kiedrowski G: Surface promoted replication and exponential amplification of DNA analogues. Nature 1998, 396: 245–248. 10.1038/24343 Strazewski P: Adding to Hans Kuhn's thesis on the emergence of the genetic apparatus: of the Darwinian advantage to be neither too soluble nor too insoluble, neither too solid, nor completely liquid. Colloids and Surfaces B, Biointerfaces 2009, 74: 419–425. 10.1016/j.colsurfb.2009.07.001 Mansy SS, Schrum JP, Krishnamurthy M, Tobé S, Treco D, Szostak JW: Template-directed synthesis of a genetic polymer in a model protocell. Nature 2008, 454: 122–125. 10.1038/nature07018 Zhu TF, Szostak JW: A robust pathway for protocell growth and division under plausible prebiotic conditions. J Am Chem Soc 2009, 131: 5705–5713. 10.1021/ja900919c Szostak JW: Origins of life: Systems chemistry on early Earth. Nature 2009, 459: 171–172. 10.1038/459171a Ricardo A, Szostak JW: The origin of life on earth. Scientific American 2009, 301: 54–61. 10.1038/scientificamerican0909-54 Whitesides GM: The improbability of life. (Foreword). In Fitness of the Cosmos for Life: Biochemistry and Fine-Tuning. Edited by: Barrow JD, Morris CS, Freeland SJ, Harper CL. Cambridge: Cambridge University Press; 2008. Shannon CE, Weaver W: The mathematical theory of communication. Urbana: University of Illinois Press; 1949. Kuhn H: Versuche zur Herstellung einfacher organisierter Systeme von Molekülen. Verhandlungen der Schweiz Naturforsch Ges 1965, 245–266. Kuhn H, Möbius D: Systems of monomolecular layers-assembling and physicochemical properties. Angew Chem Int Ed Engl 1971, 10: 620–37. 10.1002/anie.197106201 Bücher H, Drexhage KH, Fleck M, Kuhn H, Möbius D, Schäfer FP, Sondermann J, Sperling W, Tillmann P, Wiegand J: Controlled transfer of excitation energy through thin layers. Molecular Crystals 1967, 2: 199–230. 10.1080/15421406708083417 Gölzhäuser A, Wöll C: Interfacial Systems Chemistry: out of the vaccum-through the liquid-into the cell. Bunsen-Magazin 2010, 12: 56–67. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM: Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 2005, 105: 1103–1169. 10.1021/cr0300789 London G, Carroll GT, Fernández Landaluce T, Pollard MM, Rudolf P, Feringa BL: Light-driven altitudinal molecular motors on surfaces. Chem Commun 2009, 1712–1714. 10.1039/b821755f Klok M, Boyle N, Pryce MT, Meetsma A, Browne WR, Feringa BL: MHz Unidirectional Rotation of Molecular Rotary Motors. J Am Chem Soc 2008, 130: 10484–10485. 10.1021/ja8037245 Pantarotto D, Browne WR, Feringa BL: Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble. Chem Commun 2008, 1533–1535. 10.1039/b715310d Kudernac T, van der Molen SJ, van Wees BJ, Feringa BL: Uni- and bi-directional light-induced switching of diarylethenes on gold nanoparticles. Chem Commun 2006, 3597–3599. 10.1039/b609119a de Jong JJD, Browne WR, Walko M, Lucas LN, Barrett LJ, McGarvey JJ, van Esch JH, Feringa BL: Raman scattering and FT-IR spectroscopic studies on dithienylethene switches--towards non-destructive optical readout. Org Biomol Chem 2006, 4: 2387–2392. 10.1039/b603914f Kuhn H, Försterling H-D, Waldeck DH: Principles of Physical Chemistry. 2nd edition. Hoboken: Wiley; 2009. Polymeropoulos EE, Sagiv J: Electrical conduction through adsorbed monolayers. J Chem Phys 1978, 69: 1836–1847. 10.1063/1.436844 Bigelow WC, Pickett DL, Zisman WA: Oleophobic monolayers. 1. Films adsorbed from solution in non-polar liquids. J Colloid Sci 1946, 1: 513–538. 10.1016/0095-8522(46)90059-1 Sagiv J: Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J Am Chem Soc 1980, 102: 92–98. 10.1021/ja00521a016 Netzer L, Sagiv J: A new approach to construction of artificial monolayer assemblies. J Am Chem Soc 1983, 105: 674–676. 10.1021/ja00341a087 Zeira A, Chowdhury D, Hoeppener S, Shantang Liu, Berson J, Cohen SR, Maoz R, Sagiv J: Patterned Organosilane Monolayers as Lyophobic-Lyophilic Guiding Templates in Surface Self-Assembly: Monolayer Self-Assembly versus Wetting-Driven Self-Assembly. Langmuir 2009, 25: 13984–14001. 10.1021/la902107u Shekhah O, Wang H, Kowarik S, Schreiber F, Paulus M, Tolan M, Sternemann C, Evers F, Zacher D, Fischer RA, Wöll C: Step-by step route for synthesis of metal-organic frameworks. J Am Chem Soc 2007, 129: 15118–15119. 10.1021/ja076210u Shekhah O, Wang H, Paradinas M, Ocal C, Schüpbach B, Terfort A, Zacher D, Fischer RA, Wöll C: Controlled interpenetration in metal-organic frameworks by liquid phase epitaxy. Nature Materials 2009, 8: 481–484. 10.1038/nmat2445 Puchner EM, Gaub HE: Exploring the conformation-regulated function of titin kinase by mechanical pump and probe experiments with single molecules. Angew Chem Int Ed Engl 2010, 49: 1147–1150. 10.1002/anie.200905956