Cauchy theory for the gravity water waves system with non-localized initial data

T. Alazard1, N. Burq2,1, C. Zuily2
1Département de Mathématiques et Applications, UMR 8553 du CNRS, École Normale Supérieure, 45, rue d'Ulm, 75005 Paris Cedex, France
2Laboratoire de Mathématiques d'Orsay, UMR 8628 du CNRS, Université Paris-Sud, 91405 Orsay Cedex, France

Tài liệu tham khảo

Alazard, 2011, On the water-wave equations with surface tension, Duke Math. J., 158, 413, 10.1215/00127094-1345653 Alazard, 2014, On the Cauchy problem for gravity water waves, Invent. Math., 198, 71, 10.1007/s00222-014-0498-z Alazard Alazard, 2009, Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves, Commun. Partial Differ. Equ., 34, 1632, 10.1080/03605300903296736 Alinhac, 1986, Paracomposition et opérateurs paradifférentiels, Commun. Partial Differ. Equ., 11, 87, 10.1080/03605308608820419 Alinhac, 1989, Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Commun. Partial Differ. Equ., 14, 173, 10.1080/03605308908820595 Bardos, 2012, Mathematics for 2d interfaces, vol. 38 Bony, 1981, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Éc. Norm. Supér. (4), 14, 209, 10.24033/asens.1404 Boussinesq, 1910, Sur une importante simplification de la théorie des ondes que produisent, à la surface d'un liquide, l'emersion d'un solide ou l'impulsion d'un coup de vent, Ann. Sci. Éc. Norm. Supér. (3), 27, 9, 10.24033/asens.615 Castro, 2012, Splash singularity for water waves, Proc. Natl. Acad. Sci., 109, 733, 10.1073/pnas.1115948108 Castro Craig, 1985, An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits, Commun. Partial Differ. Equ., 10, 787, 10.1080/03605308508820396 Craig, 2000, Travelling two and three dimensional capillary gravity water waves, SIAM J. Math. Anal., 32, 323, 10.1137/S0036141099354181 Craig, 1992, Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity, 5, 497, 10.1088/0951-7715/5/2/009 Dalibard Favre, 1935 Fefferman, 1972, Hp spaces of several variables, Acta Math., 129, 137, 10.1007/BF02392215 Gérard-Varet, 2010, Relevance of the slip condition for fluid flows near an irregular boundary, Commun. Math. Phys., 295, 99, 10.1007/s00220-009-0976-0 Germain, 2012, Global solutions for the gravity water waves equation in dimension 3, Ann. Math. (2), 175, 691, 10.4007/annals.2012.175.2.6 Grisvard, 1985 Iooss, 2009, Small divisor problem in the theory of three-dimensional water gravity waves, Mem. Am. Math. Soc., 200 Kato, 1975, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58, 181, 10.1007/BF00280740 Lannes, 2013, The Water Waves Problem: Mathematical Analysis and Asymptotics, vol. 188 Lannes, 2005, Well-posedness of the water-waves equations, J. Am. Math. Soc., 18, 605, 10.1090/S0894-0347-05-00484-4 Lannes, 2013, A stability criterion for two-fluid interfaces and applications, Arch. Ration. Mech. Anal., 208, 481, 10.1007/s00205-012-0604-6 Lindblad, 2005, Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. Math. (2), 162, 109, 10.4007/annals.2005.162.109 Lions, 1968 Metivier, 2008, Para-differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems, vol. 5 Reeder, 1981, Three-dimensional, nonlinear wave interaction in water of constant depth, Nonlinear Anal., 5, 303, 10.1016/0362-546X(81)90035-3 Wu, 1999, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Am. Math. Soc., 12, 445, 10.1090/S0894-0347-99-00290-8 Wu, 2009, Almost global well-posedness of the 2-D full water wave problem, Invent. Math., 177, 45, 10.1007/s00222-009-0176-8 Wu, 2011, Global wellposedness of the 3-D full water wave problem, Invent. Math., 184, 125, 10.1007/s00222-010-0288-1 Zakharov, 1968, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9, 190, 10.1007/BF00913182