Cauchy theory for the gravity water waves system with non-localized initial data
Tài liệu tham khảo
Alazard, 2011, On the water-wave equations with surface tension, Duke Math. J., 158, 413, 10.1215/00127094-1345653
Alazard, 2014, On the Cauchy problem for gravity water waves, Invent. Math., 198, 71, 10.1007/s00222-014-0498-z
Alazard
Alazard, 2009, Paralinearization of the Dirichlet to Neumann operator, and regularity of three-dimensional water waves, Commun. Partial Differ. Equ., 34, 1632, 10.1080/03605300903296736
Alinhac, 1986, Paracomposition et opérateurs paradifférentiels, Commun. Partial Differ. Equ., 11, 87, 10.1080/03605308608820419
Alinhac, 1989, Existence d'ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels, Commun. Partial Differ. Equ., 14, 173, 10.1080/03605308908820595
Bardos, 2012, Mathematics for 2d interfaces, vol. 38
Bony, 1981, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. Éc. Norm. Supér. (4), 14, 209, 10.24033/asens.1404
Boussinesq, 1910, Sur une importante simplification de la théorie des ondes que produisent, à la surface d'un liquide, l'emersion d'un solide ou l'impulsion d'un coup de vent, Ann. Sci. Éc. Norm. Supér. (3), 27, 9, 10.24033/asens.615
Castro, 2012, Splash singularity for water waves, Proc. Natl. Acad. Sci., 109, 733, 10.1073/pnas.1115948108
Castro
Craig, 1985, An existence theory for water waves and the Boussinesq and Korteweg–de Vries scaling limits, Commun. Partial Differ. Equ., 10, 787, 10.1080/03605308508820396
Craig, 2000, Travelling two and three dimensional capillary gravity water waves, SIAM J. Math. Anal., 32, 323, 10.1137/S0036141099354181
Craig, 1992, Nonlinear modulation of gravity waves: a rigorous approach, Nonlinearity, 5, 497, 10.1088/0951-7715/5/2/009
Dalibard
Favre, 1935
Fefferman, 1972, Hp spaces of several variables, Acta Math., 129, 137, 10.1007/BF02392215
Gérard-Varet, 2010, Relevance of the slip condition for fluid flows near an irregular boundary, Commun. Math. Phys., 295, 99, 10.1007/s00220-009-0976-0
Germain, 2012, Global solutions for the gravity water waves equation in dimension 3, Ann. Math. (2), 175, 691, 10.4007/annals.2012.175.2.6
Grisvard, 1985
Iooss, 2009, Small divisor problem in the theory of three-dimensional water gravity waves, Mem. Am. Math. Soc., 200
Kato, 1975, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., 58, 181, 10.1007/BF00280740
Lannes, 2013, The Water Waves Problem: Mathematical Analysis and Asymptotics, vol. 188
Lannes, 2005, Well-posedness of the water-waves equations, J. Am. Math. Soc., 18, 605, 10.1090/S0894-0347-05-00484-4
Lannes, 2013, A stability criterion for two-fluid interfaces and applications, Arch. Ration. Mech. Anal., 208, 481, 10.1007/s00205-012-0604-6
Lindblad, 2005, Well-posedness for the motion of an incompressible liquid with free surface boundary, Ann. Math. (2), 162, 109, 10.4007/annals.2005.162.109
Lions, 1968
Metivier, 2008, Para-differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems, vol. 5
Reeder, 1981, Three-dimensional, nonlinear wave interaction in water of constant depth, Nonlinear Anal., 5, 303, 10.1016/0362-546X(81)90035-3
Wu, 1999, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Am. Math. Soc., 12, 445, 10.1090/S0894-0347-99-00290-8
Wu, 2009, Almost global well-posedness of the 2-D full water wave problem, Invent. Math., 177, 45, 10.1007/s00222-009-0176-8
Wu, 2011, Global wellposedness of the 3-D full water wave problem, Invent. Math., 184, 125, 10.1007/s00222-010-0288-1
Zakharov, 1968, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys., 9, 190, 10.1007/BF00913182