Insulin‐like growth factor‐1 signaling is responsible for cathepsin G‐induced aggregation of breast cancer MCF‐7 cells

Cancer Science - Tập 108 Số 8 - Trang 1574-1583 - 2017
Riyo Morimoto‐Kamata1, Satoru Yui1
1Department of Pharma-Sciences, Laboratory of Host Defense, Teikyo University, Itabashi-ku, Tokyo, Japan

Tóm tắt

Cathepsin G (CG), a neutrophil serine protease, induces cell migration and multicellular aggregation of human breast cancer MCF‐7 cells in a process that is dependent on E‐cadherin and CG enzymatic activity. While these tumor cell aggregates can cause tumor emboli that could represent intravascular growth and extravasation into the surrounding tissues, resulting in metastasis, the molecular mechanism underlying this process remains poorly characterized. In this study, we aimed to identify the signaling pathway that is triggered during CG‐mediated stimulation of cell aggregation. Screening of a library of compounds containing approximately 90 molecular‐targeting drugs revealed that this process was suppressed by the insulin‐like growth factor‐1 (IGF‐1) receptor (IGF‐1R)‐specific kinase inhibitor OSI‐906, as well as the multikinase inhibitors axitinib and sunitinib. Antibody array analysis, which is capable of detecting tyrosine phosphorylation of 49 distinct receptor tyrosine kinases, and the results of immunoprecipitation studies indicated that IGF‐1R is phosphorylated in response to CG treatment. Notably, IGF‐1R neutralization via treatment with a specific antibody or silencing of IGF‐1R expression through siRNA transfection suppressed cell aggregation. Furthermore, CG treatment of MCF‐7 cells resulted in increased release of IGF‐1 into the medium for 24 h, while antibody‐mediated IGF‐1 neutralization partially prevented CG‐induced cell aggregation. These results demonstrate that autocrine IGF‐1 signaling is partly responsible for the cell aggregation induced by CG.

Từ khóa


Tài liệu tham khảo

10.1038/nature01322

10.1038/nrc3611

10.1016/j.ccr.2009.06.017

10.1158/0008-5472.CAN-10-2583

10.1093/carcin/bgs123

10.1155/2015/983698

10.1021/bi00382a032

10.1002/jlb.65.2.137

10.1124/pr.110.002733

10.1097/MOH.0b013e32834115d1

10.1038/nm.2084

10.1080/110241502321116541

10.1016/S1470-2045(04)01414-7

10.1016/j.suronc.2007.01.003

10.1016/j.molimm.2009.10.003

10.1016/j.molimm.2010.04.020

Nakajima K, 1979, Mapping the extended substrate binding site of cathepsin G and human leukocyte elastase. Studies with peptide substrates related to the α1‐protease inhibitor reactive site, J Biol Chem, 254, 4027, 10.1016/S0021-9258(18)50690-6

10.1021/bi00558a013

10.1021/bi00329a036

10.1074/jbc.274.20.13810

10.1074/jbc.M302718200

10.1074/jbc.M513040200

10.1161/CIRCRESAHA.107.150573

10.1074/jbc.M111.307009

10.1111/j.1349-7006.2005.00097.x

10.1155/2009/850940

Tomlinson JS, 2001, An intact overexpressed E‐cadherin/α, β‐catenin axis characterizes the lymphovascular emboli of inflammatory breast carcinoma, Cancer Res, 61, 5231

10.1038/sj.onc.1205389

10.1155/2012/456462

10.1155/2014/971409

10.1146/annurev-immunol-032713-120145

10.1016/S0092-8674(00)81280-5

10.1016/j.bbamcr.2004.04.010

10.1016/j.cell.2010.06.011

10.1038/nrc1388

10.4155/fmc.09.89

Mendel DB, 2003, In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet‐derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship, Clin Cancer Res, 9, 327

10.1182/blood-2002-07-2307

10.1200/JCO.2005.04.192

10.1200/JCO.2005.03.6723

10.2165/11591240-000000000-00000

10.1021/jm011022e

10.1073/pnas.0609329103

10.1634/theoncologist.2008-0261

10.2174/0929867321666141216125528

Grollman AP, 1967, Inhibitors of protein synthesis. II. Mode of action of anisomycin, J Biol Chem, 242, 3226

10.1038/nchembio814

10.1021/bi973009v

10.1002/neu.20242

10.1038/sj.onc.1203957

10.1038/nrc1387

10.1038/nrc2536

10.1146/annurev.biochem.69.1.373

10.1016/S0092-8674(00)00114-8

10.1023/A:1009523501499

10.1023/B:HIJO.0000032356.98363.a2

10.1093/carcin/bgl091

10.1006/excr.1999.4566

10.1002/jcp.10207

10.3389/fendo.2015.00106

10.1074/jbc.M106673200

10.1210/er.2001-0033

10.1210/en.2002-221102

10.1038/nrc3215

10.1186/s12943-015-0291-7

Zielinska HA, 2015, Epithelial‐to‐mesenchymal transition in breast cancer: a role for insulin‐like growth factor I and insulin‐like growth factor‐binding protein 3?, Breast Cancer (Dove Med Press), 7, 9

Resnik JL, 1998, Elevated insulin‐like growth factor I receptor autophosphorylation and kinase activity in human breast cancer, Cancer Res, 58, 1159

10.1093/jnci/51.5.1409

Bartucci M, 2001, Differential insulin‐like growth factor I receptor signaling and function in estrogen receptor (ER)‐positive MCF‐7 and ER‐negative MDA‐MB‐231 breast cancer cells, Cancer Res, 61, 6747

10.1186/bcr309

10.4297/najms.2011.3227

10.1038/bjc.1993.329

10.1038/sj.neo.7900229

10.1073/pnas.0507865102

10.1054/ghir.1999.0115