Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation

Scott A. Becker1, Bernhard Ø. Palsson1
1Department of Bioengineering, University of California San Diego, La Jolla, USA

Tóm tắt

Abstract Background Several strains of bacteria have sequenced and annotated genomes, which have been used in conjunction with biochemical and physiological data to reconstruct genome-scale metabolic networks. Such reconstruction amounts to a two-dimensional annotation of the genome. These networks have been analyzed with a constraint-based formalism and a variety of biologically meaningful results have emerged. Staphylococcus aureus is a pathogenic bacterium that has evolved resistance to many antibiotics, representing a significant health care concern. We present the first manually curated elementally and charge balanced genome-scale reconstruction and model of S. aureus' metabolic networks and compute some of its properties. Results We reconstructed a genome-scale metabolic network of S. aureus strain N315. This reconstruction, termed i SB619, consists of 619 genes that catalyze 640 metabolic reactions. For 91% of the reactions, open reading frames are explicitly linked to proteins and to the reaction. All but three of the metabolic reactions are both charge and elementally balanced. The reaction list is the most complete to date for this pathogen. When the capabilities of the reconstructed network were analyzed in the context of maximal growth, we formed hypotheses regarding growth requirements, the efficiency of growth on different carbon sources, and potential drug targets. These hypotheses can be tested experimentally and the data gathered can be used to improve subsequent versions of the reconstruction. Conclusion iSB619 represents comprehensive biochemically and genetically structured information about the metabolism of S. aureus to date. The reconstructed metabolic network can be used to predict cellular phenotypes and thus advance our understanding of a troublesome pathogen.

Từ khóa


Tài liệu tham khảo

Enright MC: The evolution of a resistant pathogen--the case of MRSA. Curr Opin Pharmacol. 2003, 3: 474-479. 10.1016/S1471-4892(03)00109-7.

Somerville GA, Said-Salim B, Wickman JM, Raffel SJ, Kreiswirth BN, Musser JM: Correlation of acetate catabolism and growth yield in Staphylococcus aureus: implications for host-pathogen interactions. Infect Immun. 2003, 71: 4724-4732. 10.1128/IAI.71.8.4724-4732.2003.

Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y, Lian J, Ito T, Kanamori M, Matsumaru H, Maruyama A, Murakami H, Hosoyama A, Mizutani-Ui Y, Takahashi NK, Sawano T, Inoue R, Kaito C, Sekimizu K, Hirakawa H, Kuhara S, Goto S, Yabuzaki J, Kanehisa M, Yamashita A, Oshima K, Furuya K, Yoshino C, Shiba T, Hattori M, Ogasawara N, Hayashi H, Hiramatsu K: Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet. 2001, 357: 1225-1240. 10.1016/S0140-6736(00)04403-2.

Covert MW, Schilling CH, Famili I, Edwards JS, Goryanin II, Selkov E, Palsson BO: Metabolic modeling of microbial strains in silico. Trends Biochem Sci. 2001, 26: 179-186. 10.1016/S0968-0004(00)01754-0.

Price ND, Papin JA, Schilling CH, Palsson BO: Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol. 2003, 21: 162-169. 10.1016/S0167-7799(03)00030-1.

Palsson B: Two-dimensional annotation of genomes. Nat Biotech. 2004, 22: 1218-1219. 10.1038/nbt1004-1218.

Price ND, Reed JL, Palsson BO: Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol. 2004, 2: 886-897. 10.1038/nrmicro1023.

Ibarra RU, Edwards JS, Palsson BO: Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature. 2002, 420: 186-189. 10.1038/nature01149.

Varma A, Palsson BO: Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol. 1994, 60: 3724-3731.

Edwards JS, Ibarra RU, Palsson BO: In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol. 2001, 19: 125-130. 10.1038/84379.

Duarte NC, Palsson BO, Fu P: Integrated analysis of metabolic phenotypes in Saccharomyces cerevisiae. BMC Genomics. 2004, 5: 63-10.1186/1471-2164-5-63.

Reed JL, Palsson BO: Thirteen years of building constraint-based in silico models of Escherichia coli. J Bacteriol. 2003, 185: 2692-2699. 10.1128/JB.185.9.2692-2699.2003.

Forster J, Famili I, Fu P, Palsson BO, Nielsen J: Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 2003, 13: 244-253. 10.1101/gr.234503.

Duarte NC, Herrgard MJ, Palsson BO: Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 2004, 14: 1298-1309. 10.1101/gr.2250904.

Van Dien SJ, Lidstrom ME: Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C(3) and C(4) metabolism. Biotechnol Bioeng. 2002, 78: 296-312. 10.1002/bit.10200.

Hong SH, Kim JS, Lee SY, In YH, Choi SS, Rih JK, Kim CH, Jeong H, Hur CG, Kim JJ: The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat Biotechnol. 2004, 22: 1275-1281. 10.1038/nbt1010.

Schilling CH, Covert MW, Famili I, Church GM, Edwards JS, Palsson BO: Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol. 2002, 184: 4582-4593. 10.1128/JB.184.16.4582-4593.2002.

Schilling CH, Palsson BO: Assessment of the metabolic capabilities of Haemophilus influenzae Rd through a genome-scale pathway analysis. J Theor Biol. 2000, 203: 249-283. 10.1006/jtbi.2000.1088.

Vo TD, Greenberg HJ, Palsson BO: Reconstruction and functional characterization of the human mitochondrial metabolic network based on proteomic and biochemical data. J Biol Chem. 2004, 279: 39532-39540. 10.1074/jbc.M403782200.

Papp B, Pal C, Hurst LD: Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature. 2004, 429: 661-664. 10.1038/nature02636.

Segre D, Vitkup D, Church GM: Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci U S A. 2002, 99: 15112-15117. 10.1073/pnas.232349399.

Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabasi AL: Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature. 2004, 427: 839-843. 10.1038/nature02289.

Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO: Integrating high-throughput and computational data elucidates bacterial networks. Nature. 2004, 429: 92-96. 10.1038/nature02456.

Burgard AP, Pharkya P, Maranas CD: Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng. 2003, 84: 647-657. 10.1002/bit.10803.

Reed JL, Vo TD, Schilling CH, Palsson BO: An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol. 2003, 4: R54-10.1186/gb-2003-4-9-r54.

Fong SS, Marciniak JY, Palsson BO: Description and interpretation of adaptive evolution of Escherichia coli K-12 MG1655 by using a genome-scale in silico metabolic model. J Bacteriol. 2003, 185: 6400-6408. 10.1128/JB.185.21.6400-6408.2003.

Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L: Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science. 2001, 292: 929-934. 10.1126/science.292.5518.929.

Edwards JS, Palsson BO: The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A. 2000, 97: 5528-5533. 10.1073/pnas.97.10.5528.

Dauner M, Sauer U: Stoichiometric growth model for riboflavin-producing Bacillus subtilis. Biotechnol Bioeng. 2001, 76: 132-143. 10.1002/bit.1153.

Varma A, Palsson BO: Parametric Sensitivity of Stoichiometric Flux Balance Models Applied to Wild-Type Escherichia-Coli Metabolism. Biotechnology and Bioengineering. 1995, 45: 69-79. 10.1002/bit.260450110.

Edwards JS, Covert M, Palsson B: Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol. 2002, 4: 133-140. 10.1046/j.1462-2920.2002.00282.x.

Bonarius HPJ, Schmid G, Tramper J: Flux analysis of underdetermined metabolic networks: The quest for the missing constraints. Trends in Biotechnology. 1997, 15: 308-314. 10.1016/S0167-7799(97)01067-6.

Varma A, Palsson BO: Metabolic Flux Balancing - Basic Concepts, Scientific and Practical Use. Bio-Technology. 1994, 12: 994-998.

Onoue Y, Mori M: Amino acid requirements for the growth and enterotoxin production by Staphylococcus aureus in chemically defined media. Int J Food Microbiol. 1997, 36: 77-82. 10.1016/S0168-1605(97)01250-6.

Rudin L, Sjostrom JE, Lindberg M, Philipson L: Factors affecting competence for transformation in Staphylococcus aureus. J Bacteriol. 1974, 118: 155-164.

Covert MW, Palsson BO: Transcriptional regulation in constraints-based metabolic models of Escherichia coli. J Biol Chem. 2002, 277: 28058-28064. 10.1074/jbc.M201691200.

Crossley KB, Archer G: The staphylococci in human disease. 1997, New York, Churchill Livingstone, xvi, 682 p., [2] p. plates-

Ji Y, Zhang B, Van SF, Horn, Warren P, Woodnutt G, Burnham MK, Rosenberg M: Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science. 2001, 293: 2266-2269. 10.1126/science.1063566.

Forsyth RA, Haselbeck RJ, Ohlsen KL, Yamamoto RT, Xu H, Trawick JD, Wall D, Wang L, Brown-Driver V, Froelich JM, C KG, King P, McCarthy M, Malone C, Misiner B, Robbins D, Tan Z, Zhu Zy ZY, Carr G, Mosca DA, Zamudio C, Foulkes JG, Zyskind JW: A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol Microbiol. 2002, 43: 1387-1400. 10.1046/j.1365-2958.2002.02832.x.

Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F, Brignell SC, Bron S, Bunai K, Chapuis J, Christiansen LC, Danchin A, Debarbouille M, Dervyn E, Deuerling E, Devine K, Devine SK, Dreesen O, Errington J, Fillinger S, Foster SJ, Fujita Y, Galizzi A, Gardan R, Eschevins C, Fukushima T, Haga K, Harwood CR, Hecker M, Hosoya D, Hullo MF, Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K, Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio I, Le Coq D, Masson A, Mauel C, Meima R, Mellado RP, Moir A, Moriya S, Nagakawa E, Nanamiya H, Nakai S, Nygaard P, Ogura M, Ohanan T, O'Reilly M, O'Rourke M, Pragai Z, Pooley HM, Rapoport G, Rawlins JP, Rivas LA, Rivolta C, Sadaie A, Sadaie Y, Sarvas M, Sato T, Saxild HH, Scanlan E, Schumann W, Seegers JF, Sekiguchi J, Sekowska A, Seror SJ, Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T, Takeuchi M, Thomaides HB, Vagner V, van Dijl JM, Watabe K, Wipat A, Yamamoto H, Yamamoto M, Yamamoto Y, Yamane K, Yata K, Yoshida K, Yoshikawa H, Zuber U, Ogasawara N: Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A. 2003, 100: 4678-4683. 10.1073/pnas.0730515100.

Peterson JD, Umayam LA, Dickinson T, Hickey EK, White O: The Comprehensive Microbial Resource. Nucleic Acids Res. 2001, 29: 123-125. 10.1093/nar/29.1.123.

Kanehisa M, Goto S, Kawashima S, Nakaya A: The KEGG databases at GenomeNet. Nucleic Acids Res. 2002, 30: 42-46. 10.1093/nar/30.1.42.

Sonenshein AL, Hoch JA, Losick R: Bacillus subtilis and its closest relatives : from genes to cells. 2002, Washington, D.C., ASM Press, xvi, 629 p.-

Theodore TS, Panos C: Protein and fatty acid composition of mesosomal vesicles and plasma membranes of Staphylococcus aureus. J Bacteriol. 1973, 116: 571-576.

Freiberg C, Brunner NA, Schiffer G, Lampe T, Pohlmann J, Brands M, Raabe M, Habich D, Ziegelbauer K: Identification and characterization of the first class of potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity. J Biol Chem. 2004, 279: 26066-26073. 10.1074/jbc.M402989200.

Bulloch EM, Jones MA, Parker EJ, Osborne AP, Stephens E, Davies GM, Coggins JR, Abell C: Identification of 4-amino-4-deoxychorismate synthase as the molecular target for the antimicrobial action of (6s)-6-fluoroshikimate. J Am Chem Soc. 2004, 126: 9912-9913. 10.1021/ja048312f.

Mukhopadhyay R, Kapoor P, Madhubala R: Antileishmanial effect of a potent S-adenosylmethionine decarboxylase inhibitor: CGP 40215A. Pharmacol Res. 1996, 33: 67-70. 10.1006/phrs.1996.0011.

Guo J, Wu YQ, Rattendi D, Bacchi CJ, Woster PM: S-(5'-deoxy-5'-adenosyl)-1-aminoxy-4-(methylsulfonio)-2-cyclopentene (AdoMao): an irreversible inhibitor of S-adenosylmethionine decarboxylase with potent in vitro antitrypanosomal activity. J Med Chem. 1995, 38: 1770-1777. 10.1021/jm00010a021.

Cooney DA, Milman HA, Jayaram HN, Homan ER: Inhibition of L-asparagine synthetase by mucochloric and mucobromic acids. Enzyme. 1976, 21: 524-539.

Boehlein SK, Nakatsu T, Hiratake J, Thirumoorthy R, Stewart JD, Richards NG, Schuster SM: Characterization of inhibitors acting at the synthetase site of Escherichia coli asparagine synthetase B. Biochemistry. 2001, 40: 11168-11175. 10.1021/bi0155551.

Rosowsky A, Fu H, Chan DC, Queener SF: Synthesis of 2,4-diamino-6-[2'-O-(omega-carboxyalkyl)oxydibenz[b,f]azepin-5-yl]methylpt eridines as potent and selective inhibitors of Pneumocystis carinii, Toxoplasma gondii, and Mycobacterium avium dihydrofolate reductase. J Med Chem. 2004, 47: 2475-2485. 10.1021/jm030599o.

Johnson T, Khan IA, Avery MA, Grant J, Meshnick SR: Quantitative structure-activity relationship studies of a series of sulfa drugs as inhibitors of Pneumocystis carinii dihydropteroate synthetase. Antimicrob Agents Chemother. 1998, 42: 1454-1458.

Grape M, Sundstrom L, Kronvall G: Sulphonamide resistance gene sul3 found in Escherichia coli isolates from human sources. J Antimicrob Chemother. 2003, 52: 1022-1024. 10.1093/jac/dkg473.

Tian F, Montchamp JL, Frost JW: Inhibitor Ionization as a Determinant of Binding to 3-Dehydroquinate Synthase. J Org Chem. 1996, 61: 7373-7381. 10.1021/jo960709h.

Hartman HA, Edmondson DE, McCormick DB: Riboflavin 5'-pyrophosphate: a contaminant of commercial FAD, a coenzyme for FAD-dependent oxidases, and an inhibitor of FAD synthetase. Anal Biochem. 1992, 202: 348-355. 10.1016/0003-2697(92)90117-P.

Rejman J, Kozubek A: Inhibitory effect of natural phenolic lipids upon NAD-dependent dehydrogenases and on triglyceride accumulation in 3T3-L1 cells in culture. J Agric Food Chem. 2004, 52: 246-250. 10.1021/jf034745a.

Winkler BS, Kapousta-Bruneau N, Arnold MJ, Green DG: Effects of inhibiting glutamine synthetase and blocking glutamate uptake on b-wave generation in the isolated rat retina. Vis Neurosci. 1999, 16: 345-353. 10.1017/S095252389916214X.

Obojska A, Berlicki L, Kafarski P, Lejczak B, Chicca M, Forlani G: Herbicidal pyridyl derivatives of aminomethylene-bisphosphonic acid inhibit plant glutamine synthetase. J Agric Food Chem. 2004, 52: 3337-3344. 10.1021/jf049843q.

Loida PJ, Thompson RL, Walker DM, CaJacob CA: Novel inhibitors of glutamyl-tRNA(Glu) reductase identified through cell-based screening of the heme/chlorophyll biosynthetic pathway. Arch Biochem Biophys. 1999, 372: 230-237. 10.1006/abbi.1999.1505.

He A, Rosazza JP: GTP cyclohydrolase I: purification, characterization, and effects of inhibition on nitric oxide synthase in nocardia species. Appl Environ Microbiol. 2003, 69: 7507-7513. 10.1128/AEM.69.12.7507-7513.2003.

Shen RS, Alam A, Zhang YX: Inhibition of GTP cyclohydrolase I by pterins. Biochim Biophys Acta. 1988, 965: 9-15.

Mason RP, Walter MF, Jacob RF: Effects of HMG-CoA reductase inhibitors on endothelial function: role of microdomains and oxidative stress. Circulation. 2004, 109: II34-41.

Miller TL, Wolin MJ: Inhibition of growth of methane-producing bacteria of the ruminant forestomach by hydroxymethylglutaryl-SCoA reductase inhibitors. J Dairy Sci. 2001, 84: 1445-1448.

Tomoda H, Ohbayashi N, Kumagai H, Hashizume H, Sunazuka T, Omura S: Differential inhibition of HMG-CoA synthase and pancreatic lipase by the specific chiral isomers of beta-lactone DU-6622. Biochem Biophys Res Commun. 1999, 265: 536-540. 10.1006/bbrc.1999.1712.

Wrensford LV, Rodwell VW, Anderson VE: 3-Hydroxy-3-methylglutaryldithio-coenzyme A: a potent inhibitor of Pseudomonas mevalonii HMG-CoA reductase. Biochem Med Metab Biol. 1991, 45: 204-208. 10.1016/0885-4505(91)90022-D.

Thompson K, Dunford JE, Ebetino FH, Rogers MJ: Identification of a bisphosphonate that inhibits isopentenyl diphosphate isomerase and farnesyl diphosphate synthase. Biochem Biophys Res Commun. 2002, 290: 869-873. 10.1006/bbrc.2001.6289.

Kappler F, Vrudhula VM, Hampton A: Toward the synthesis of isozyme-specific enzyme inhibitors. Potent inhibitors of rat methionine adenosyltransferases. Effect of one-atom elongation of the ribose-P alpha bridge in two covalent adducts of L-methionine and beta,gamma-imido-ATP. J Med Chem. 1988, 31: 384-389. 10.1021/jm00397a020.

Sozzani S, Agwu DE, McCall CE, O'Flaherty JT, Schmitt JD, Kent JD, McPhail LC: Propranolol, a phosphatidate phosphohydrolase inhibitor, also inhibits protein kinase C. J Biol Chem. 1992, 267: 20481-20488.

Nord LD, Willis RC, Breen TS, Avery TL, Finch RA, Sanghvi YS, Revankar GR, Robins RK: Inhibition of phosphoribosylpyrophosphate synthetase by 4-methoxy-(MRPP) and 4-amino-8-(D-ribofuranosylamino) pyrimido[5,4-d]pyrimidine (ARPP). Biochem Pharmacol. 1989, 38: 3543-3549. 10.1016/0006-2952(89)90126-3.

Cushman M, Sambaiah T, Jin G, Illarionov B, Fischer M, Bacher A: Design, synthesis, and evaluation of 9-D-ribitylamino-1,3,7,9-tetrahydro-2,6,8-purinetriones bearing alkyl phosphate and alpha,alpha-difluorophosphonate substituents as inhibitors of tiboflavin synthase and lumazine synthase. J Org Chem. 2004, 69: 601-612. 10.1021/jo030278k.

Lakanen JR, Pegg AE, Coward JK: Synthesis and biochemical evaluation of adenosylspermidine, a nucleoside-polyamine adduct inhibitor of spermidine synthase. J Med Chem. 1995, 38: 2714-2727. 10.1021/jm00014a023.

Mattila T, Honkanen-Buzalski T, Poso H: Reversible inhibition of bacterial growth after specific inhibition of spermidine synthase by dicyclohexylamine. Biochem J. 1984, 223: 823-830.

Sempuku K: Photoinactivation of the thiamin transport system in Saccharomyces cerevisiae with azidobenzoyl derivatives of thiamin. Biochim Biophys Acta. 1988, 944: 177-184.

Iwashima A, Nishimura H, Nishino H: Inhibition of thiamine transport in baker's yeast by methylene blue. Experientia. 1980, 36: 1153-1154.

Lin S, Del Razo LM, Styblo M, Wang C, Cullen WR, Thomas DJ: Arsenicals inhibit thioredoxin reductase in cultured rat hepatocytes. Chem Res Toxicol. 2001, 14: 305-311. 10.1021/tx0001878.

Smith AD, Guidry CA, Morris VC, Levander OA: Aurothioglucose inhibits murine thioredoxin reductase activity in vivo. J Nutr. 1999, 129: 194-198.

Winans KA, Bertozzi CR: An inhibitor of the human UDP-GlcNAc 4-epimerase identified from a uridine-based library: a strategy to inhibit O-linked glycosylation. Chem Biol. 2002, 9: 113-129. 10.1016/S1074-5521(02)00093-5.

Andres CJ, Bronson JJ, D'Andrea SV, Deshpande MS, Falk PJ, Grant-Young KA, Harte WE, Ho HT, Misco PF, Robertson JG, Stock D, Sun Y, Walsh AW: 4-Thiazolidinones: novel inhibitors of the bacterial enzyme MurB. Bioorg Med Chem Lett. 2000, 10: 715-717. 10.1016/S0960-894X(00)00073-1.