Synthesis and Biological Evaluation of Novel Fused [1,2,3]Triazolo[4',5':3,4] pyrrolo[2,1-f]purines as Potent Anti-Proliferative Agents

Russian Journal of Bioorganic Chemistry - Tập 47 - Trang 896-905 - 2021
E. Ramya Sucharitha1, N. Satheesh Kumar1, M. Ravinder1, N. Vasudeva Reddy2, Sirassu Narsimha1
1Department of Chemistry, Chaitanya (Deemed to be University), Warangal, India
2Department of Chemistry, Kakatiya University, Warangal, India

Tóm tắt

In search of the best anticancer agents, a series of novel fused [1,2,3]triazolo[4',5':3,4] pyrrolo[2,1-f]purine derivatives in one vessel was synthesized using 8-bromo-1,3-dimethyl-7-(prop-2-yn-1-yl)-1H-purine-2,6(3H,7H)-dione and various arylazides. The newly synthesized derivatives were evaluated for their in vitro anti-proliferative activity against four human cancer cell lines (MCF-7, HeLa, A-549 and U-87MG). 3-(3,5-dichlorophenyl)-5,7-dimethyl-7,10-dihydro-[1,2,3]triazolo[4',5':3,4]pyrrolo[2,1-f]purine-6,8(3H,5H)-dione and 5,7-dimethyl-3-(4-nitrophenyl)-3,10-dihydro-[1,2,3]triazolo[4',5':3.4]pyrrolo[2,1-f]purine-6,8 (5H,7H)-dione are showed stronger activity against MCF-7 and A-549 with IC50 values ranging from 11.5 ± 0.64 to 15.3 ± 0.81 μM, which are comparable to the standard drug doxorubicin. Molecular docking studies have also been conducted to complement the experimental results.

Tài liệu tham khảo

Nivedita, S., Ashwinee, K.S., Thakur, M.S., and Sanjukta, P., Heliyon, 2018, vol. 4, no. 10, e00829. https://doi.org/10.1016/j.heliyon.2018.e00829 Allwood, M.B., Cannan, B., Van Aalten, D.M.F., and Eggleston, I.M., Tetrahedron., 2007, vol. 63, pp. 12294–12302. https://doi.org/10.1016/j.tet.2007.09.067 Hayallah, A. M., Elgaher, W.A., Salem, O. I., and Abdel Alim, A.A.M., Arch. Pharm. Res., 2011, vol. 34, pp. 3–21. https://doi.org/10.1007/s12272-011-0101-8 Matthias, E., Elke, L., Michael, M., Moh, T., Leo, T., Herbert, N., Waldemar, P., Brian, G., Ralf, L., Peter, S., Holger, F., and Frank, H., J. Med. Chem., 2007, vol. 50, pp. 6450–6453. https://doi.org/10.1021/jm701280z Gang, L., Yi, H., Baokun, Y., Jin, W., Qian, J., Ziyun, L., Zhufang, S., and Haihong, H., Eur. J. Med. Chem., 2016, vol. 124, pp. 103–116. https://doi.org/10.1016/j.ejmech.2016.08.023 Yiwen, H., Xiaoqing, H., Taizhi, W., and Fuli, Z., Molecules, 2016, vol. 21, pp.1041. https://doi.org/10.3390/molecules21081041 Yan, R., Heying, P., Mingfeng, S., and Lijuan, C., Chem. Biol. Drug. Des., 2016, vol. 87, pp. 290–295. https://doi.org/10.1111/cbdd.12663 Sirassu, N., Kumara, S.B., Ravinder, M., Reddy, Y.N., and Vasudeva, R.N., J. Chem. Sci., 2020, vol. 132, pp. 59. https://doi.org/10.1007/s12039-020-1760-0 Glennon, R.A., Gaines, J.J., and Rogers, M.E., J. Med. Chem., 1981, vol. 24, pp. 766–769. https://doi.org/10.1021/jm00138a027 Wong, E.H.-A. and Ooi, S.-O., Biochem. Pharmacol., 1985, vol. 34, pp. 2891–2896. https://doi.org/10.1016/0006-2952(85)90012-7 Haginaka, J., Wakai, J., Yasuda, H., and Kimura, Y., J. Chromatogr. B Biomed. Sci. Appl., 1990, vol. 529, pp. 455–461. https://doi.org/10.1016/s0378-4347(00)83854-2 Constantin, S., Lupascu, F.G., Apotrosoaei, M., Vasincu, I.M., Lupascu, D., and Buron, F., Chem. Cent. J., 2017, vol.11, p. 12. https://doi.org/10.1186/s13065-017-0241-0 Dai, Z.-K., Liu, Y.-W., Hsu, J.-H., Yeh, J.-L., Chen, I.-J., and Wu, J.-R., Int. J. Biol. Sci., 2015, vol.11, pp. 633–642. https://doi.org/10.7150/ijbs.11127 Slattery, M.L. and West, D.W., Cancer Causes Control, 1993, vol. 4, pp. 559–563. https://doi.org/10.1007/BF00052432 Barcz, E., Sommer, E., Janik, P., Marianowski, L., and Skopinska-Rózewska, E., Oncol. Rep., 2000, vol. 7, pp. 1285–1291. https://doi.org/10.3892/or.7.6.1285 Kakuyama, A., and Sadzuka, Y., Curr. Drug Metabol., 2001, vol. 2, pp. 379–395. https://doi.org/10.2174/1389200013338270 Zhang, Y., Yu, J., Zhang, L., Cai, J., Cai, D., and Lv, C., Tumor Biol., 2016, vol. 37, pp. 2703–2708. https://doi.org/10.1007/s13277-015-4106-7 Agalave, S.G., Maujan, S.R., and Pore, V.S., Chem. Asian J., 2011, vol. 6, pp. 2696–2718. https://doi.org/10.1002/asia.201100432 El-Sagheer, A.H. and Brown, T., Acc. Chem. Res., 2012, vol. 45, pp. 1258–1267. https://doi.org/10.1021/ar200321n Thirumurugan, P., Matosiuk, D., and Jozwiak, K., Chem. Rev., 2013, vol. 113, pp. 4905–4979. https://doi.org/10.1021/cr200409f Bonandi, E., Christodoulou, M.S., Fumagalli, G., Perdicchia, D., Rastelli, G., and Passarella, D., Drug. Discov. Today., 2017, 2ol. 2, pp. 1572–1581. https://doi.org/10.1016/j.drudis.2017.05.014 Narsimha, S., Kumara, S.B., Satheesh, K. N., Ramesh, G., Yellu, N.R., and Vasudeva, R. N., RSC Adv., 2016, vol. 6, pp. 74332–74339. https://doi.org/10.1039/C6RA12285J Narsimha, S., Kumara, S.B., Yellu, N.R., Vasudeva, R.N., Chem. Heterocycl. Compd., 2018, vol. 54, pp. 1161–1167. https://doi.org/10.1007/s10593-019-02408-6 Senwar, K.R., Sharma, P., Reddy, T.S., Jeengar, M.K., Nayak, V.L., Naidu, V.G., Kamal, A., and Shankaraiah, N., Eur. J. Med. Chem., 2015, vol. 102, pp. 413–424. https://doi.org/10.1016/j.ejmech.2015.08.017 Sheng-Jiao, Y., Yong-Jiang, L., Yu-Lan, C., Lin, L., and Jun, L., Bioorg. Med. Chem. Lett., 2010, vol. 20, pp. 5225–5228. https://doi.org/10.1016/j.bmcl.2010.06.141 Chen, C.Y., Yang, C.H., Hu, W.P., Vandavasi, J.K., Chung, M.I., and Wang, J.J., RSC Adv., 2013, vol. 3, pp. 2710–2719. https://doi.org/10.1039/C2RA22799A Srivari, C., Mallikanti, S., Abhishek, K., Chada, R. R., Suman, K. M., Chityal, G. K., and Sridhar, B., Tetrahedron Lett., 2011, vol. 52, pp. 806–808. https://doi.org/10.1016/j.tetlet.2010.12.040 Hsin-Yu, H., Wen-Chun, L., Gopal, C.S., WanPing, H., Jium-Jia, L., Tong-Rong, T., Yu-Wei, C., Kung-Kai, K., Chung-Yu, C., and Jeh-Jeng, W., J. Med. Chem., 2013, vol. 56, pp. 5422–5435. https://doi.org/10.1021/jm400394s Ramesh, B.H., Ravinder, M., Narsimha, S., Indian J. Heterocycl. Chem., 2019, vol. 29, pp. 389–395. Narsimha, S., Kumar, N.S., Kumaraswamy, B., Vasudeva, R.N., Hussain, A.S., and Srinivasa, R.M., Bioorg. Med. Chem. Lett., 2016, vol. 26, pp.1639–1644. https://doi.org/10.1016/j.bmcl.2016.01.055 Swamy, B.K., Narsimha, S., Kumar, T.R., Reddy, Y.N., and Reddy, N.V., Chem. Select., 2017, vol. 2, pp. 9595–9598. https://doi.org/10.1002/slct.201701902 Narsimha, S., Battula, K.S., and Nagavelli, V.R., Syn. Commun., 2018, vol. 48, pp. 1220–1226. https://doi.org/10.1080/00397911.2018.1440315 Swamy, B.K., Narsimha, S., Kumar, T.R., Reddy, Y.N., and Reddy, N.V., Chem. Select., 2017, vol. 2, pp. 4001–4005. https://doi.org/10.1002/slct.201700524 Ramesh, B.H., Narsimha, S., Ravinder, M., Janapatla, U.R., Indian J. Heterocycl. Chem., 2020, vol. 30, pp. 233–238. Mosmann, T., J. Immunol. Methods, 1983, vol. 65, pp. 55–63. https://doi.org/10.1016/0022-1759(83)90303-4 Botta, M., Armaroli, S., Castagnolo, D., Fontana, G., Pera, P., and Bombardelli, E., Bioorg. Med. Chem. Lett., 2007, vol. 17, pp. 1579–1583. https://doi.org/10.1016/j.bmcl.2006.12.101 Park, J.H. and Lemmon, M.A., Biochem. J., 2012, vol. 448, pp. 417–423. https://doi.org/10.1042/BJ20121513 Sebastian, J., Richards, R.G., Walker, M. P., Wiesen, J.F., Werb, Z., Derynck, R., Hom,Y. K., Cunha, G.R., and DiAugustine, R. P., Cell Grow. Diff., 1998, vol. 9, pp. 777–785. McBryan, J., Howlin, J., Napoletano, S., and Martin, F., J. Mammary Gland Biol. Neoplasia, 2008, vol. 13, pp.159–167. https://doi.org/10.1007/s10911-008-9075-7 Walker, F., Abramowitz, L., Benabderrahmane, D., Duval, X., Descatoire, V., Henin, D., Lehy, T., and Aparicio, T., Hum. Path., 2009, vol. 40, pp. 1517–1527. https://doi.org/10.1016/j.humpath.2009.05.010 Roskoski, R. Jr., Pharmacol Res., 2014, vol. 79, pp. 34–74. https://doi.org/10.1016/j.phrs.2013.11.002