Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix

Springer Science and Business Media LLC - Tập 8 - Trang 1-12 - 2010
Karlheinz Mann1, Fred H Wilt2, Albert J Poustka3
1Max-Planck-Institut für Biochemie, Abteilung Proteomics und Signaltransduktion, Martinsried, Germany
2Department of Molecular and Cell Biology, University of California, Berkeley, USA
3Max-Planck-Institut für Molekulare Genetik, Evolution and Development Group, Berlin, Germany

Tóm tắt

The sea urchin embryo has been an important model organism in developmental biology for more than a century. This is due to its relatively simple construction, translucent appearance, and the possibility to follow the fate of individual cells as development to the pluteus larva proceeds. Because the larvae contain tiny calcitic skeletal elements, the spicules, they are also important model organisms for biomineralization research. Similar to other biominerals the spicule contains an organic matrix, which is thought to play an important role in its formation. However, only few spicule matrix proteins were identified previously. Using mass spectrometry-based methods we have identified 231 proteins in the matrix of the S. purpuratus spicule matrix. Approximately two thirds of the identified proteins are either known or predicted to be extracellular proteins or transmembrane proteins with large ectodomains. The ectodomains may have been solubilized by partial proteolysis and subsequently integrated into the growing spicule. The most abundant protein of the spicule matrix is SM50. SM50-related proteins, SM30-related proteins, MSP130 and related proteins, matrix metalloproteases and carbonic anhydrase are among the most abundant components. The spicule matrix is a relatively complex mixture of proteins not only containing matrix-specific proteins with a function in matrix assembly or mineralization, but also: 1) proteins possibly important for the formation of the continuous membrane delineating the mineralization space; 2) proteins for secretory processes delivering proteinaceous or non-proteinaceous precursors; 3) or proteins reflecting signaling events at the cell/matrix interface. Comparison of the proteomes of different skeletal matrices allows prediction of proteins of general importance for mineralization in sea urchins, such as SM50, SM30-E, SM29 or MSP130. The comparisons also help point out putative tissue-specific proteins, such as tooth phosphodontin or specific spicule matrix metalloproteases of the MMP18/19 group. Furthermore, the direct sequence analysis of peptides by MS/MS validates many predicted genes and confirms the existence of the corresponding proteins.

Tài liệu tham khảo

Okazaki K: Skeleton formation of sea urchin larvae II. Organic matrix of the spicule. Embryologia 1960, 5: 283–320. 10.1111/j.1440-169X.1960.tb00096.x Decker GL, Lennarz WJ: Skeletogenesis in the sea urchin embryo. Development 1988, 103: 231–247. Wilt FH, Ettensohn CA: The morphogenesis and biomineralization of the sea urchin larval skeleton. In Handbook of Biomineralization. Volume 1. Edited by: Bäuerlein E. Weinheim:Wiley-VCH Verlag; 2007:183–210. Killian CE, Wilt FH: Molecular aspects of biomineralization of the echinoderm endoskeleton. Chem Rev 2008, 108: 4463–4474. 10.1021/cr0782630 Benson S, Jones EME, Crise-Benson N, Wilt FH: Morphology of the organic matrix of the spicule of the sea urchin larva. Exp Cell Res 1983, 148: 249–253. 10.1016/0014-4827(83)90204-5 Benson SC, Crise-Benson N, Wilt FH: The organic matrix of the skeletal spicule of sea urchin embryos. J Cell Biol 1986, 102: 1878–1886. 10.1083/jcb.102.5.1878 Venkatesan M, Simpson RT: Isolation and characterization of spicule proteins from Strongylocentrotus purpuratus . Exp Cell Res 1986, 166: 259–264. 10.1016/0014-4827(86)90526-4 Benson S, Sucov H, Stephens L, Davidson E, Wilt FH: A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression. Dev Biol 1987, 120: 499–506. 10.1016/0012-1606(87)90253-3 Sucov HM, Benson S, Robinson JJ, Britten RJ, Wilt FH, Davidson EH: A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. II. Structure of the gene and derived sequence of the protein. Dev Biol 1987, 120: 507–519. 10.1016/0012-1606(87)90254-5 George NC, Killian CE, Wilt FH: Characterization and expression of a gene encoding a 30.6-kDa Strongylocentrotus purpuratus spicule matrix protein. Dev Biol 1991, 147: 334–342. 10.1016/0012-1606(91)90291-A Harkey MA, Klueg K, Sheppard P, Raff RA: Structure, expression, and extracellular targeting of PM27, a skeletal protein associated specifically with growth of the sea urchin larval spicule. Dev Biol 1995, 168: 549–566. 10.1006/dbio.1995.1101 Lee Y-H, Britten RJ, Davidson EH: SM37, a skeletogenic gene of the sea urchin embryo linked to the SM50 gene. Develop Growth Differ 1999, 41: 303–312. 10.1046/j.1440-169X.1999.413429.x Illies MR, Peeler MT, Dechtiaruk AM, Ettensohn CA: Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus . Dev Genes Evol 2002, 212: 419–431. 10.1007/s00427-002-0261-0 Seto J, Zhang Y, Hamilton P, Wilt FH: The localization of occluded matrix proteins in calcareous spicules of sea urchin larvae. J Struct Biol 2004, 148: 123–130. 10.1016/j.jsb.2004.04.001 The Sea Urchin Genome Sequencing Consortium: The genome of the sea urchin Strongylocentrotus purpuratus . Science 2006, 314: 941–952. 10.1126/science.1133609 Livingston BT, Killian CE, Wilt FH, Cameron A, Landrum MJ, Ermolaeva O, Sapojnikov V, Maglott DR, Buchanan AM, Ettensohn CA: A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus . Dev Biol 2006, 300: 335–348. 10.1016/j.ydbio.2006.07.047 Mitsunaga K, Akasaka K, Shimada H, Fujino Y, Yasumasu I, Numanoi H: Carbonic anhydrase activity in developing sea urchin embryos with special reference to calcification of spicules. Cell Differ 1986, 18: 257–262. 10.1016/0045-6039(86)90057-6 Roe JL, Park HR, Strittmatter WJ, Lennarz WJ: Inhibitors of metalloendoproteases block spiculogenesis in sea urchin primary mesenchyme cells. Exp Cell Res 1989, 181: 542–550. 10.1016/0014-4827(89)90110-9 Ingersoll EP, McDonald KL, Wilt FH: Ultrastructural localization of spicule matrix proteins in normal and metalloproteinase inhibitor-treated sea urchin primary mesenchyme cells. J Exp Zool 2003, 300A: 101–112. 10.1002/jez.a.10316 Mitsunaga K, Shinohara S, Yasumasu Y: Probable contribution of protein phosphorylation by protein kinase C to spicule formation in sea urchin embryos. Develop Growth Differ 1990, 32: 335–342. 10.1111/j.1440-169X.1990.00335.x Cervello M, Sanfilippo R, Isola G, Virruso L, Scalia G, Cammarata G, Gambino R: Phosphorylation-dependent regulation of skeletogenesis in sea urchin micromere-derived cells and embryos. Develop Growth Differ 1999, 41: 769–775. 10.1046/j.1440-169x.1999.00479.x Kumano M, Foltz KR: Inhibition of mitogen activated protein kinase signaling affects gastrulation and spiculogenesis in the sea urchin embryo. Develop Growth Differ 2003, 45: 527–542. 10.1111/j.1440-169X.2003.00710.x Ohta K, Takahashi C, Tosuji H: Inhibition of spicule elongation in sea urchin embryos by the acetylcholinesterase inhibitor serine. Comp Biochem Physiol 2009, 153B: 310–316. Killian CE, Wilt FH: Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules. J Biol Chem 1996, 271: 9150–9159. 10.1074/jbc.271.15.9150 Mann K, Poustka AJ, Mann M: The sea urchin ( Strongylocentrotus purpuratus ) test and spine proteomes. Proteome Sci 2008, 6: 22. 10.1186/1477-5956-6-22 Mann K, Poustka AJ, Mann M: In-depth, high-accuracy proteomics of sea urchin tooth organic matrix. Proteome Sci 2008, 6: 33. 10.1186/1477-5956-6-33 Mann K, Poustka AJ, Mann M: Phosphoproteomes of Strongylocentrotus purpuratus shell and tooth matrix. Identification of a major acidic sea urchin tooth phosphoprotein, phosphodontin. Proteome Sci 2010, 8: 6. 10.1186/1477-5956-8-6 Politi Y, Metzler RA, Albrecht M, Gilbert B, Wilt FH, Addadi L, Weiner S, Gilbert PUPA: Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc Nat Acad Sci USA 2008, 105: 17362–17366. 10.1073/pnas.0806604105 Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M: In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols 2006, 1: 2856–2860. 10.1038/nprot.2006.468 Rappsilber J, Mann M, Ishihama Y: Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature Protocols 2007, 2: 1896–1906. 10.1038/nprot.2007.261 Olsen JV, de Godoy LMF, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M: Parts per million mass accuracy on a orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 2005, 4: 2010–2021. 10.1074/mcp.T500030-MCP200 Olsen JV, Schwartz JC, Griep-Raming J, Nielsen ML, Damoc E, Denisov E, Lange O, Remes P, Taylor D, Splendore M, Wouters ER, Senko M. Makarov A, Mann M, Horning S: A dual pressure linear ion trap-Orbitrap instrument with very high sequencing speed. Mol Cell Proteomics 2009, 8: 2759–2769. 10.1074/mcp.M900375-MCP200 Cox J, Mann M: MaxQuant enables high peptide identification rates, individualized ppb-range mass accuracies and proteome-wide protein quantification. Nature Biotechnol 2009, 26: 1367–1372. 10.1038/nbt.1511 Cox J, Mann M: Computational Principles of determining and improving mass precision and accuracy for proteome measurements in an orbitrap. J Am Soc Mass Spectrom 2009, 20: 1477–1485. 10.1016/j.jasms.2009.05.007 Cameron RA, Samanta M, Yuan A, He D, Davidson E: SpBase: the sea urchin genome database and web site. Nucl Acids Res 2009, 37: D750-D754. 10.1093/nar/gkn887 Hirose S, Shimizu K, Inoue N, Kanai S, Noguchi T: Disordered region prediction by integrating POODLE series. CASP8 Proceedings 2008, 14–15. Briesemeister S, Blum T, Brady S, Lam Y, Kohlbacher O, Shatkay H: SherLoc2: a high-accuracy hybrid method for predicting subcellulat localization of proteins. J Proteome Res 2009, 8: 5363–5366. 10.1021/pr900665y Dyrløv Bendtsen J, Nielsen H, von Heijne G, Søren Brunak S: Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004, 340: 783–795. 10.1016/j.jmb.2004.05.028 Dyrløv Bendtsen J, Juhl Jensen L, Blom N, von Heijne G, Brunak S: Feature based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 2004, 17: 349–356. 10.1093/protein/gzh037 Emmanuelsson O, Brunak S, von Heinje G, Nielsen H: Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols 2007, 2: 953–971. 10.1038/nprot.2007.131 Marchler-Bauer A, Bryant SH: CD-Search: Protein domain annotations on the fly. Nucl Acids Res 2004, 32: W327-W331. 10.1093/nar/gkh454 Zdobnow EM, Apweiler R: InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics 2001, 17: 847–848. 10.1093/bioinformatics/17.9.847 Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M: Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteom 2005, 4: 1265–1272. 10.1074/mcp.M500061-MCP200 Killian CE, Croker L, Wilt FH: SpSM30 gene family expression patterns in embryonic and adult biomineralized tissues of the sea urchin, Strongylocentrotus purpuratus . Gene Exp Patterns 2010, 10: 135–139. 10.1016/j.gep.2010.01.002 Ingersoll EP, Wilt FH: Matrix metalloproteases inhibitors disrupt spicule formation by primary mesenchymal cells in the sea urchin embryo. Dev Biol 1998, 196: 95–106. 10.1006/dbio.1998.8857 Wilt FH, Killian CE, Hamilton P, Croker L: The dynamics of secretion during sea urchin embryonic skeleton formation. Exp Cell Res 2008, 314: 1744–1752. 10.1016/j.yexcr.2008.01.036 Carson DD, Farach MC, Earles DS, Decker GL, Lennarz WJ: A monoclonal antibody inhibits calcium accumulation and skeleton formation in cultured embryonic cells of the sea urchin. Cell 1985, 41: 639–648. 10.1016/S0092-8674(85)80036-2 Farach MC, Valdizian M, Park HR, Decker GL, Lennarz WJ: Developmental expression of a cell-surface protein involved in calcium uptake and skeleton formation in sea urchin embryos. Dev Biol 1987, 122: 320–331. 10.1016/0012-1606(87)90297-1 Parr BA, Parks AL, Raff RA: Promoter structure and protein sequence of msp130, a lipid-anchored sea urchin glycoprotein. J Biol Chem 1990, 265: 1408–1413. Barik S: Immunophilins: for the love of proteins. Cell Mol Life Sci 2006, 63: 2889–2900. 10.1007/s00018-006-6215-3 Amore G, Davidson EH: cis-Regulatory control of cyclophilins, a member of the ETS-DRI skeletogenic gene battery in the sea urchin embryo. Dev Biol 2006, 293: 555–564. 10.1016/j.ydbio.2006.02.024 Cheers MS, Ettensohn CA: P16 is an essential regulator of skeletogenesis in the sea urchin embryo. Dev Biol 2005, 283: 384–396. 10.1016/j.ydbio.2005.02.037 Gerke V, Moss SE: Annexins: From structure to function. Physiol Rev 2002, 82: 331–371. Monastyrskaya K, Babiychul EB, Draeger A: The annexins: spatial and temporal coordination of signaling events during cellular stress. Cell Mol Life Sci 2009, 66: 2623–2642. 10.1007/s00018-009-0027-1 Von der Mark K, Mollenhauer J: Annexin V interactions with collagen. Cell Mol Life Sci 1997, 53: 539–545. 10.1007/s000180050069 Balcerzak M, Hamade E, Zhang L, Pikula S, Azzar G, Radisson J, Bandorowicz-Pikula J, Buchet R: The roles of annexins and alkaline phosphatase in mineralization processes. Acta Biochim Polonica 2003, 50: 1019–1038. Alford AI, Terkhorn SP, Reddy AB, Hankenson KD: Thrombospondin-2 regulates matrix mineralization in MC3T3-E1 pre-osteoblasts. Bone 2010, 46: 464–471. 10.1016/j.bone.2009.08.058 Mann K, Macek B, Olsen JV: Proteomic analysis of the acid-soluble organic matrix of the chicken calcified eggshell layer. Proteomics 2006, 6: 3801–3810. 10.1002/pmic.200600120 Peled-Kamar M, Hamilton P, Wilt FH: The spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule. Exp Cell Res 2002, 272: 56–61. 10.1006/excr.2001.5398 Wilt FH, Croker L, McDonald K: The role of LSM34/SpSM50 in endoskeletal spicule formation in sea urchin embryos. Invert Biol 2008, 127: 452–459. 10.1111/j.1744-7410.2008.00147.x