A remorin gene is implicated in quantitative disease resistance in maize

Theoretical and Applied Genetics - Tập 129 - Trang 591-602 - 2016
Tiffany M. Jamann1,2, Xingyu Luo1,3, Laura Morales1, Judith M. Kolkman1, Chia-Lin Chung1,4, Rebecca J. Nelson1
1School of Integrative Plant Science, Cornell University, Ithaca, USA
2Department of Crop Sciences, University of Illinois, Urbana, USA
3Department of Plant Pathology, University of Wisconsin-Madison, Madison, USA
4Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan

Tóm tắt

Quantitative disease resistance is used by plant breeders to improve host resistance. We demonstrate a role for a maize remorin ( ZmREM6.3 ) in quantitative resistance against northern leaf blight using high-resolution fine mapping, expression analysis, and mutants. This is the first evidence of a role for remorins in plant-fungal interactions. Quantitative disease resistance (QDR) is important for the development of crop cultivars and is particularly useful when loci also confer multiple disease resistance. Despite its widespread use, the underlying mechanisms of QDR remain largely unknown. In this study, we fine-mapped a known quantitative trait locus (QTL) conditioning disease resistance on chromosome 1 of maize. This locus confers resistance to three foliar diseases: northern leaf blight (NLB), caused by the fungus Setosphaeria turcica; Stewart’s wilt, caused by the bacterium Pantoea stewartii; and common rust, caused by the fungus Puccinia sorghi. The Stewart’s wilt QTL was confined to a 5.26-Mb interval, while the rust QTL was reduced to an overlapping 2.56-Mb region. We show tight linkage between the NLB QTL locus and the loci conferring resistance to Stewart’s wilt and common rust. Pleiotropy cannot be excluded for the Stewart’s wilt and the common rust QTL, as they were fine-mapped to overlapping regions. Four positional candidate genes within the 243-kb NLB interval were examined with expression and mutant analysis: a gene with homology to an F-box gene, a remorin gene (ZmREM6.3), a chaperonin gene, and an uncharacterized gene. The F-box gene and ZmREM6.3 were more highly expressed in the resistant line. Transposon tagging mutants were tested for the chaperonin and ZmREM6.3, and the remorin mutant was found to be more susceptible to NLB. The putative F-box is a strong candidate, but mutants were not available to test this gene. Multiple lines of evidence strongly suggest a role for ZmREM6.3 in quantitative disease resistance.

Tài liệu tham khảo

Adipala E, Lipps P, Madden L (1993) Occurrence of Exserohilum turcicum on maize in Uganda. Plant Dis 77:202 Bozkurt T, Richardson A, Dagdas Y, Mongrand S, Kamoun S et al (2014) The plant membrane-associated REM1.3 remorin accumulates in discrete perihaustorial domains and enhances susceptibility to Phytophthora infestans. Plant Physiol 165:1005–1018 Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890 Canaran P, Buckler ES, Glaubitz JC, Stein L, Sun Q et al (2008) Panzea: an update on new content and features. Nucl Acids Res 36:D1041–D1043 Chia JM, Song C, Bradbury PJ, Costich D, de Leon N et al (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 44:803–807 Chisholm ST, Dahlbeck D, Krishnamurthy N, Day B, Sjolander K et al (2005) Molecular characterization of proteolytic cleavage sites of the Pseudomonas syringae effector AvrRpt2. Proc Natl Acad Sci 102:2087–2092 Chung CL, Jamann T, Longfellow J, Nelson R (2010a) Characterization and fine-mapping of a resistance locus for northern leaf blight in maize bin 8.06. Theor Appl Genet 121:205–227 Chung CL, Longfellow JM, Walsh EK, Kerdieh Z, Van Esbroeck G et al (2010b) Resistance loci affecting distinct stages of fungal pathogenesis: use of introgression lines for QTL mapping and characterization in the maize–Setosphaeria turcica pathosystem. BMC Plant Biol 10:103 Cook DE, Lee TG, Guo X, Melito S, Wang K et al (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338(6111):1206–1209 De Boeck P, Bakker M, Zwitser R, Nivard M, Hofman A et al (2011) The estimation of item response models with the lmer function from the lme4 package in R. J Stat Softw 39:1–28 den Boer E, Zhang NW, Pelgrom K, Visser RG, Niks RE et al (2013) Fine mapping quantitative resistances to downy mildew in lettuce revealed multiple sub-QTLs with plant stage dependent effects reducing or even promoting the infection. Theor Appl Genet 126:2995–3007 Doyle JJ, Dickson EE (1987) Preservation of plant samples for DNA restriction endonuclease analysis. Taxon 36(4):715–722 Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797 Esker P, Nutter F (2002) Assessing the risk of Stewart’s disease of corn through improved knowledge of the role of the corn flea beetle vector. Phytopathology 92:668–670 Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166 Fininsa C, Yuen J (2001) Association of maize rust and leaf blight epidemics with cropping systems in Hararghe highlands, eastern Ethiopia. Crop Prot 20:669–678 Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM et al (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064 Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L et al (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360 Fukuoka S, Saka N, Koga H, Ono K, Shimizu T et al (2009) Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325:998–1001 Gore M, Chia J, Elshire R, Sun Q, Ersoz E et al (2009) A first-generation haplotype map of maize. Science 326:1115 Groth JV, Zeyen RJ, Davis DW, Christ BJ (1983) Yield and quality losses caused by common rust (Puccinia sorghi Schw.) in sweet corn (Zea mays) hybrids. Crop Protection 2(1):105–111 Huerta-Cepas J, Dopazo J, Gabaldón T (2010) ETE: a python environment for tree exploration. BMC Bioinformatics 1(1):24 Jamann T, Poland J, Kolkman K, Smith L, Nelson R (2014) Unraveling genomic complexity at a quantitative disease resistance locus in maize. Genetics 198(1):333–344 Jennings P, Ullstrup A (1957) A histological study of three Helminthosporium leaf blights of corn. Phytopathology 47:707–714 Johnson EB, Haggard JE, St Clair DA (2012) Fractionation, stability, and isolate-specificity of QTL for resistance to Phytophthora infestans in cultivated tomato (Solanum lycopersicum). G3 Genes Genomes Genet 2:1145–1159 Khan A, Ries S, Pataky J (1996) Transmission of Erwinia stewartii through seed of resistant and susceptible field and sweet corn. Plant Dis 80:398–403 Kim HS, Delaney TP (2002) Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance. Plant Cell 14:1469–1482 Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J et al (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363 Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR et al (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168 Lefebvre B, Timmers T, Mbengue M, Moreau S, Herve C et al (2010) A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci 107:2343–2348 Leonard K, Levy Y, Smith D (1989) Proposed nomenclature for pathogenic races of Exserohilum turcicum on corn. Plant Dis 73:776–777 Levy Y, Pataky J (1992) Epidemiology of northern leaf blight on sweet corn. Phytoparasitica 20:53–66 Manosalva PM, Davidson RM, Liu B, Zhu X, Hulbert SH et al (2009) A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice. Plant Physiol 149:286–296 McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H et al (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740 Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J et al (2011) Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:596–601 Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A et al (2014) The genome portal of the department of energy joint genome institute: 2014 updates. Nucl Acids Res 42:D26–D31 Nurmberg PL, Knox KA, Yun BW, Morris PC, Shafiei R et al (2007) The developmental selector AS1 is an evolutionarily conserved regulator of the plant immune response. Proc Natl Acad Sci 104:18795–18800 Perkins JM (1987) Disease development and yield losses associated with northern leaf blight on corn. Plant Dis 71:940 Perraki A, Binaghi M, Mecchia M, Gronnier J, German-Retana S et al (2014) StRemorin1.3 hampers Potato virus X TGBp1 ability to increase plasmodesmata permeability, but does not interfere with its silencing suppressor activity. FEBS Lett 588:1699–1705 Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29 Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci 108:6893–6898 R Core Development Team (2013) R: a language and environment for statistical computing. Vienna Raffaele S, Mongrand S, Gamas P, Niebel A, Ott T (2007) Genome-wide annotation of remorins, a plant-specific protein family: evolutionary and functional perspectives. Plant Physiol 145:593–600 Raffaele S, Bayer E, Lafarge D, Cluzet S, German Retana S et al (2009) Remorin, a solanaceae protein resident in membrane rafts and plasmodesmata, impairs potato virus X movement. Plant Cell 21:1541–1555 Raymundo AD (1981) Measuring the relationship between northern corn leaf blight and yield losses. Plant Dis 65:325 Roper MC (2011) Pantoea stewartii subsp. stewartii: lessons learned from a xylem-dwelling pathogen of sweet corn. Mol Plant Pathol 12:628–637 Schaefer CM, Bernardo R (2013) Genomewide association mapping of flowering time, kernel composition, and disease resistance in historical Minnesota maize inbreds. Crop Sci 53:2518–2529 Schnable PS, Ware D, Fulton RS, Stein JC, Wei F et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115 Settles AM, Latshaw S, McCarty DR (2004) Molecular analysis of high-copy insertion sites in maize. Nucl Acids Res 32:e54 St Clair DA (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol 48:247–268 Suparyono, Pataky JK (1989) Influence of host resistance and growth stage at the time of inouclaiton on Stewart’s wilt and Goss’s wilt development and sweet corn hybrid yield. Plant Dis 73:339–345 Szalma SJ, Hostert BM, Ledeaux JR, Stuber CW, Holland JB (2007) QTL mapping with near-isogenic lines in maize. Theor Appl Genet 114:1211–1228 Todesco M, Balasubramanian S, Hu TT, Traw MB, Horton M et al (2010) Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 465:632–636 Tóth K, Stratil TF, Madsen EB, Ye J, Popp C et al (2012) Functional domain analysis of the remorin protein LjSYMREM1 in Lotus japonicus. PLoS One 7(1):e30817 Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC et al (2012) Primer3—new capabilities and interfaces. Nucl Acids Res 40:e115 Van Inghelandt D, Melchinger AE, Martinant JP, Stich B (2012) Genome-wide association mapping of flowering time and northern corn leaf blight (Setosphaeria turcica) resistance in a vast commercial maize germplasm set. BMC Plant Biol 12:56 Wallace JG, Larson SJ, Buckler ES (2014a) Association mapping across numerous traits reveals patterns of functional variation in maize. PLoS Genet 10:e1004845 Wallace JG, Bradbury PJ, Zhang N, Gibon Y, Stitt M et al (2014b) Entering the second century of maize quantitative genetics. Heredity 112:30–38 Wilcoxson R, Atif A, Skovmand B (1974) Slow rusting of wheat varieties in the field correlated with stem rust (Puccinia graminis tritici) severity on detached leaves in the greenhouse. Plant Dis Rep 58:1085–1087 Wisser RJ, Sun Q, Hulbert SH, Kresovich S, Nelson RJ (2005) Identification and characterization of regions of the rice genome associated with broad-spectrum, quantitative disease resistance. Genetics 169(4):2277–2293 Wisser RJ, Balint-Kurti PJ, Nelson RJ (2006) The genetic architecture of disease resistance in maize: a synthesis of published studies. Phytopathology 96:120–129 Wisser RJ, Kolkman JM, Patzoldt ME, Holland JB, Yu J et al (2011) Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. Proc Natl Acad Sci 108:7339–7344 Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208