Cytotoxicity of selected Cameroonian medicinal plants and Nauclea pobeguinii towards multi-factorial drug-resistant cancer cells

BMC Complementary and Alternative Medicine - Tập 15 - Trang 1-9 - 2015
Victor Kuete1,2, Louis P. Sandjo3, Armelle T. Mbaveng2, Jackson A. Seukep2, Bonaventure T. Ngadjui4, Thomas Efferth1
1Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Mainz, Germany
2Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
3Department of Pharmaceutical Sciences, CCSUniversidade Federal de Santa Catarina, Florianópolis, Brazil
4Department of Organic Chemistry, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon

Tóm tắt

Malignacies are still a major public concern worldwide and despite the intensive search for new chemotherapeutic agents, treatment still remains a challenging issue. This work was designed to assess the cytotoxicity of six selected Cameroonian medicinal plants, including Nauclea pobeguinii and its constituents 3-acetoxy-11-oxo-urs-12-ene (1), p-coumaric acid (2), citric acid trimethyl ester (3), resveratrol (4), resveratrol β-D-glucopyranoside (5) and strictosamide (6), against 8 drug-sensitive and multidrug-resistant (MDR) cancer cell lines. The resazurin reduction assay was used to evaluate the cytotoxicity of the crude extracts and compounds, whilst column chromatography was used to isolate the constituents of Nauclea pobeguinii. Structural characterization of isolated compounds was performed using nuclear magnetic resonance (NMR) spectroscopic data. Preliminary experiments on leukemia CCRF-CEM cells at 40 μg/mL showed that the leaves and bark extracts from Tragia benthamii, Canarium schweinfurthii, Myrianthus arboreus, Dischistocalyx grandifolius and Fagara macrophylla induced more than 50 % growth of this cell line contrary to the leaves and bark extracts of N. pobeguinii. IC50 values below or around 30 μg/mL were obtained with leaves and bark extracts of N. pobeguinii towards two and five, respectively, of the 8 tested cancer cell lines. The lowest IC50 value was obtained with the bark extract of N. pobeguinii against HCT116 (p53 −/− ) colon cancer cells (8.70 μg/mL). Compounds 4 and 6 displayed selective activity on leukemia and carcinoma cells, whilst 1–3 were not active. IC50 values below 100 μM were recorded with compound 5 on all 9 tested cancer cell lines as well as with 4 against 7 out of 8 and 6 against 2 out of 8 cell lines. Collateral sensitivity was observed in CEM/ADR5000 leukemia cells, MDA-MB-231-BCRP breast adenocarcinoma cells (0.53-fold), HCT116 (p53 +/+ ) cells, human U87MG.ΔEGFR glioblastome multiforme cells to the methanolic bark extract of N. pobeguinii, as well as in MDA-MB-231-BCRP cells and HCT116 (p53 +/+ ) cells and U87MG.ΔEGFR cells (0.86-fold) to compound 5. The results of this study demonstrate the cytotoxicity of six Cameroonian medicinal plants, Canarium schweinfurthii, Dischistocalyx grandifolius, Tragia benthamii, Fagara macrophylla, Myrianthus arboreus and Nauclea pobeguinii. We also demonstrated the antiproliferative potential of Nauclea pobeguinii against drug-resistant cancer cell lines. Resveratrol and its glucoside are the major cytotoxic constituents in the bark of Nauclea pobeguinii.

Tài liệu tham khảo

Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5:219–34. Biedler JL, Spengler BA. Reverse transformation of multidrug-resistant cells. Cancer Metastasis Rev. 1994;13:191–207. Efferth T, Sauerbrey A, Olbrich A, Gebhart E, Rauch P, Weber HO, et al. Molecular modes of action of artesunate in tumor cell lines. Mol Pharmacol. 2003;64:382–94. Efferth T, Sauerbrey A, Halatsch ME, Ross DD, Gebhart E. Molecular modes of action of cephalotaxine and homoharringtonine from the coniferous tree Cephalotaxus hainanensis in human tumor cell lines. Naunyn Schmiedebergs Arch Pharmacol. 2003;367:56–67. el-Deiry WS. Role of oncogenes in resistance and killing by cancer therapeutic agents. Curr Opin Oncol. 1997;9:79–87. Efferth T. The human ATP-binding cassette transporter genes: from the bench to the bedside. Curr Mol Med. 2001;1:45–65. Gottesman MM, Ling V. The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett. 2006;580:998–1009. Gillet JP, Efferth T, Remacle J. Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta. 2007;1775:237–62. Zaharia V, Ignat A, Palibroda N, Ngameni B, Kuete V, Fokunang CN, et al. Synthesis of some p-toluenesulfonyl-hydrazinothiazoles and hydrazino-bis-thiazoles and their anticancer activity. Eur J Med Chem. 2010;45:5080–5. Kuete V, Wabo HK, Eyong KO, Feussi MT, Wiench B, Krusche B, et al. Anticancer activities of six selected natural compounds of some Cameroonian medicinal plants. PLoS One. 2011;6, e21762. Dzoyem JP, Nkuete AH, Kuete V, Tala MF, Wabo HK, Guru SK, et al. Cytotoxicity and antimicrobial activity of the methanol extract and compounds from Polygonum limbatum. Planta Med. 2012;78:787–92. Kuete V, Ngameni B, Wiench B, Krusche B, Horwedel C, Ngadjui BT, et al. Cytotoxicity and mode of action of four naturally occuring flavonoids from the genus Dorstenia: gancaonin Q, 4-hydroxylonchocarpin, 6-prenylapigenin, and 6,8-diprenyleriodictyol. Planta Med. 2011;77:1984–9. Kuete V, Viertel K, Efferth T. 18 - Antiproliferative potential of African medicinal plants. In: Kuete V, editor. Medicinal Plant Research in Africa. Oxford: Elsevier; 2013. Kuete V, Sandjo L, Nantchouang Ouete J, Fouotsa H, Wiench B, Efferth T. Cytotoxicity and modes of action of three naturally occuring xanthones (8-hydroxycudraxanthone G, morusignin I and cudraxanthone I) against sensitive and multidrug-resistant cancer cell lines. Phytomedicine. 2013;21:315–22. Kuete V, Sandjo L, Wiench B, Efferth T. Cytotoxicity and modes of action of four Cameroonian dietary spices ethno-medically used to treat Cancers: Echinops giganteus, Xylopia aethiopica, Imperata cylindrica and Piper capense. J Ethnopharmacol. 2013;149:245–53. Cordell G, Beecher C, Pezzut J. Can ethnopharmacology contribute to development of new anti-cancer? J Ethnopharmacol. 1991;32:117–33. Popoca J, Aguilar A, Alonso D, Villarreal M. Cytotoxic activity of selected plants used as antitumorals in Mexican traditional medicine. J Ethnopharmacol. 1998;59:173–7. O'Brien J, Wilson I, Orton T, Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem. 2000;267:5421–6. Kuete V, Tchakam PD, Wiench B, Ngameni B, Wabo HK, Tala MF, et al. Cytotoxicity and modes of action of four naturally occuring benzophenones: 2,2',5,6'-tetrahydroxybenzophenone, guttiferone E, isogarcinol and isoxanthochymol. Phytomedicine. 2013;20:528–36. Kimmig A, Gekeler V, Neumann M, Frese G, Handgretinger R, Kardos G, et al. Susceptibility of multidrug-resistant human leukemia cell lines to human interleukin 2-activated killer cells. Cancer Res. 1990;50:6793–9. Gillet J, Efferth T, Steinbach D, Hamels J, de Longueville F, Bertholet V, et al. Microarray-based detection of multidrug resistance in human tumor cells by expression profiling of ATP-binding cassette transporter genes. Cancer Res. 2004;64:8987–93. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998;95:15665–70. Kuete V, Sandjo L, Seukep J, Maen Z, Ngadjui B, Efferth T. Cytotoxic compounds from the fruits of Uapaca togoensis towards multi-factorial drug-resistant cancer cells. Planta Med. 2015;81:32–8. Kuete V, Fankam AG, Wiench B, Efferth T. Cytotoxicity and modes of action of the methanol extracts of six Cameroonian medicinal plants against multidrug-resistant tumor cells. Evid Based Complement Alternat Med. 2013;2013:285903. Kuete V, Tankeo SB, Saeed ME, Wiench B, Tane P, Efferth T. Cytotoxicity and modes of action of five Cameroonian medicinal plants against multi-factorial drug resistance of tumor cells. J Ethnopharmacol. 2014;153:207–19. Ogawa S, Wakatsuki Y, Makino M, Fujimoto Y, Yasukawa K, Kikuchi T, et al. Oxyfunctionalization of unactivated C-H bonds in triterpenoids with tert-butylhydroperoxide catalyzed by meso-5,10,15,20-tetramesitylporphyrinate osmium(II) carbonyl complex. Chem Phys Lipids. 2010;163:165–71. Huang Y, Zeng W, Li G, Liu G, Zhao D, Wang J, et al. Characterization of a new sesquiterpene and antifungal activities of chemical constituents from Dryopteris fragrans (L.) Schott. Molecules. 2014;19:507–13. Choi J, Lee D. A new citryl glycoside from Gastrodia elata and its inhibitory activity on GABA transaminase. Chem Pharm Bull. 2006;54:1720–1. Aydin T, Cakir A, Kazaz C, Bayrak N, Bayir Y, Taskesenligil Y. Insecticidal metabolites from the rhizomes of Veratrum album against adults of Colorado potato beetle. Leptinotarsa decemlineata Chem Biodivers. 2014;11:1192–204. Wei X, Yang S, Liang N, Hu D, Jin L, Xue W, et al. Chemical constituents of Caesalpinia decapetala (Roth) Alston. Molecules. 2013;18:1325–36. Atta-ur-Rahman R, Zaman K, Perveen S, Habib-ur-Rehman R, Muzaffar A, Choudhary M, et al. Steroidal alkaloids from leaves of Buxus sempervirens. Phytochemistry. 1991;30:1298–3. Xu Y-J, Foubert K, Dhooghe L, Lemière F, Cimanga K, Mesia K, et al. Chromatographic profiling and identification of two new iridoid-indole alkaloids by UPLC–MS and HPLC-SPE-NMR analysis of an antimalarial extract from Nauclea pobeguinii. Phytochem Lett. 2012;5:316–9. Suffness M, Pezzuto J. Assays related to cancer drug discovery. London: Academic; 1990. Boik J. Natural compounds in cancer therapy. Minnesota USA: Oregon Medical Press; 2001. Brahemi G, Kona FR, Fiasella A, Buac D, Soukupova J, Brancale A, et al. Exploring the structural requirements for inhibition of the ubiquitin E3 ligase breast cancer associated protein 2 (BCA2) as a treatment for breast cancer. J Med Chem. 2010;53:2757–65. Shen B, Li D, Dong P, Gao S. Expression of ABC transporters is an unfavorable prognostic factor in laryngeal squamous cell carcinoma. Ann Otol Rhinol Laryngol. 2011;120:820–7. Zhou C, Ding J, Wu Y. Resveratrol induces apoptosis of bladder cancer cells via miR21 regulation of the Akt/Bcl2 signaling pathway. Mol Med Rep. 2014;9:1467–73. Khan A, Aljarbou AN, Aldebasi YH, Faisal SM, Khan MA. Resveratrol suppresses the proliferation of breast cancer cells by inhibiting fatty acid synthase signaling pathway. Cancer Epidemiol. 2014;38:765–72. Huang F, Wu XN, Chen J, Wang WX, Lu ZF. Resveratrol reverses multidrug resistance in human breast cancer doxorubicin-resistant cells. Exp Ther Med. 2014;7:1611–6. Orwa C, Mutua A, Kindt R, Jamnadass R. Simons. A Agroforestree Database: a tree reference and selection guide version 4.0. World Agroforestry Centre: Nairobi-Kenya; 2009. Kouambou C, Dimo T, Dzeufiet P, Ngueguim F, Tchamadeu M, Wembe E, et al. Antidiabetic and hypolipidemic effects of Canarium schweinfurthii hexane bark extract in streptozotocin-diabetic rats. PharmacologyOnline. 2007;1:209–19. Berhaut J. Flore illustrée du Sénégal. Dicotylédones. Tome II, Balanophoracées. Dakar Senegal: Collation; 1974. Koudou J, Abena AA, Ngaissona P, Bessiere JM. Chemical composition and pharmacological activity of essential oil of Canarium schweinfurthii. Fitoterapia. 2005;76:700–3. Tamboue H, Fotso S, Ngadjui B, Dongo E, Abegaz B. Phenolic metabolites from seeds of Canarium schweinfurthii. Bull Chem Soc Ethiop. 2000;14:155–9. Atawodi S. Polyphenol composition and in vitro antioxydant potential of Nigerian Canarium schweinfurthii Engl. Oil Adv Biol Res. 2010;4:314–22. Kamdem RS, Wafo P, Yousuf S, Ali Z, Adhikari A, Rasheed S, et al. Canarene: a triterpenoid with a unique carbon skeleton from Canarium schweinfurthii. Org Lett. 2011;13:5492–5. Uzama D, Bwai DM, Oguntokun JO, Olutayo O O. Antioxidant and phytochemicals of hexane and ethanolic extracts of Canarium schweinfurthii Burseraceae. Asian J Phar Biol Res. 2012;2:188–90. Nvau J, Gushit J, Orishadipe T, Kolo I. Antimycobacterial activity of the leaves extract of Canarium schweinfurthii Engl. Conti J Phar Sci. 2011;5:20–4. Moshi MJ, Innocent E, Masimba PJ, Otieno DF, Weisheit A, Mbabazi P, et al. Antimicrobial and brine shrimp toxicity of some plants used in traditional medicine in Bukoba District, north-western Tanzania. Tanzan J Health Res. 2009;11:23–8. Adjanohoun J, Aboubakar N, Dramane K, Ebot M, Ekpere J, Enow-Orock E, et al. Traditional medicine and pharmacopoeia: contribution to ethnobotanical and floristic studies in Cameroon. OUA/STRC: Lagos; 1996. Fézan H, Trab G, Irié K, N’gaman C, Mohou C. Études de quelques plantes thérapeutiques utilisées dans le traitement de l’hypertension artérielle et du diabète : deux maladies émergentes en Côte d’Ivoire. Sci Nat. 2008;5:39–48. Kuete V, Krusche B, Youns M, Voukeng I, Fankam AG, Tankeo S, et al. Cytotoxicity of some Cameroonian spices and selected medicinal plant extracts. J Ethnopharmacol. 2011;134:803–12. Torto FG, Mensah IA. Alkaloids of Fagara macrophylla. Phytochemistry. 1970;9:911–4. Tringali C, Spatafora C, Cali V, Simmonds MS. Antifeedant constituents from Fagara macrophylla. Fitoterapia. 2001;72:538–43. Zirihi G, Yao D, Kra-adou K, Grellier P. Phytochemical and pharmacological studies of alcoholic extract of Fagara macrophylla (Oliv) Engl (Rutaceae): chemical structure of active compound inducing antipaludic activity. J Chin Clini Med. 2007;2:205–10. Wansi JD, Nwozo SO, Mbaze LM, Devkota KP, Donkwe Moladje SM, Fomum ZT, et al. Amides from the stem bark of Fagara macrophylla. Planta Med. 2009;75:517–21. Wall ME, Wani MC, Taylor H. Plant antitumor agents, 27. Isolation, structure, and structure activity relationships of alkaloids from Fagara macrophylla. J Nat Prod. 1987;50:1095–9. Agwa O, Chuku W, Obichi E. The in vitro effect of Myrianthus arboreus leaf extract on some pathogenic bacteria of clinical origin. J Microbiol Biotechnol Res. 2011;1:77–85. Uzodimma D. Medico-Ethnobotanical inventory of Ogii, Okigwe Imo State, South Eastern Nigeria - I. Glob Adv Res J Med Plant. 2013;2:030–44. Otitoju G, Nwamarah J, Otitoju O, Odoh E, Iyeghe L. Phytochemical composition of some underutilsed green leafy vegetables in nsukka urban Lga of Enugu State. J Biodiv Env Sci. 2014;4:208–17. Akinkurolere R, Adedire C, Odeyemi O, Raji J, Owoeye J. Bioefficacy of Extracts of some indigenous Nigerian plants on the developmental stages of mosquito (Anopheles gambiae). Jordan J Biol Sci. 2011;4:237–42. Karou SD, Tchacondo T, Ilboudo DP, Simpore J. Sub-Saharan Rubiaceae: a review of their traditional uses, phytochemistry and biological activities. Pak J Biol Sci. 2011;14:149–69. Kadiri H, Adegor E, Asagba S. Effect of aqueous Nauclea pobeguinii leaf extract on rats induced with hepatic injury. Res J Med Plant. 2007;1:139–43. Mesia GK, Tona GL, Penge O, Lusakibanza M, Nanga TM, Cimanga RK, et al. Antimalarial activities and toxicities of three plants used as traditional remedies for malaria in the Democratic Republic of Congo: Croton mubango, Nauclea pobeguinii and Pyrenacantha staudtii. Ann Trop Med Parasitol. 2005;99:345–57. Zeches M, Richard B, Gueye-M’Bahia L, LeMen-Olivier L, Delaude C. Constituants des écorces de racine de Nauclea pobeguinii. J Nat Prod. 1985;48:42–6. Oladosu IA, Balogun SO, Ademowo GO. Phytochemical screening, antimalarial and histopathological studies of Allophylus africanus and Tragia benthamii. Chin J Nat Med. 2013;11:371–6.