Immunophenotyping of pediatric brain tumors: correlating immune infiltrate with histology, mutational load, and survival and assessing clonal T cell response

Journal of Neuro-Oncology - Tập 137 - Trang 269-278 - 2018
Ashley S. Plant1, Shohei Koyama2, Claire Sinai3, Isaac H. Solomon4, Gabriel K. Griffin4, Keith L. Ligon5, Pratiti Bandopadhayay1, Rebecca Betensky6, Ryan Emerson7, Glenn Dranoff8, Mark W. Kieran1, Jerome Ritz9
1Pediatric Neuro-Oncology, Dana-Farber Cancer Institute, Boston, USA
2Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
3Pediatric Hematology/Oncology, Dana-Farber Cancer Institute, Boston, USA
4Department of Pathology, Brigham and Women’s Hospital, Boston, USA
5Division of Neuro-Pathology, Department of Pathology, Brigham and Women’s Hospital, Boston, USA
6Harvard T.H. Chan School of Public Health, Boston, USA
7Adpative Technologies Corp, Seattle, USA
8Novartis Institutes for BioMedical Research, Cambridge, USA
9Dana Farber Cancer Institute, Boston, USA

Tóm tắt

There is little known regarding the immune infiltrate present in pediatric brain tumors and how this compares to what is known about histologically similar adult tumors and its correlation with survival. Here, we provide a descriptive analysis of the immune infiltrate of 22 fresh pediatric brain tumor tissue samples of mixed diagnoses and 40 peripheral blood samples. Samples were analyzed using a flow cytometry panel containing markers for immune cell subtypes, costimulatory markers, inhibitory signals, and markers of activation. This was compared to the standard method of immunohistochemistry (IHC) for immune markers for 89 primary pediatric brain tumors. Both flow cytometry and IHC data did not correlate with the grade of tumor or mutational load and IHC data was not significantly associated with survival for either low grade or high grade gliomas. There is a trend towards a more immunosuppressive phenotype in higher grade tumors with more regulatory T cells present in these tumor types. Both PD1 and PDL1 were present in only a small percentage of the tumor infiltrate. T cell receptor sequencing revealed up to 10% clonality of T cells in tumor infiltrates and no significant difference in clonality between low and high grade gliomas. We have shown the immune infiltrate of pediatric brain tumors does not appear to correlate with grade or survival for a small sample of patients. Further research and larger studies are needed to fully understand the interaction of pediatric brain tumors and the immune system.

Tài liệu tham khảo

Curtin SC, Miniño AM, Anderson RN (2016) Declines in cancer death rates among children and adolescents in the United States, 1999–2014. NCHS data brief, no 257. National Center for Health Statistics, Hyattsville Neagu M. Reardon D (2015) An update on the role of immunotherapy and vaccine strategies for primary brain tumors. Curr Treat Options Oncol 16(11):54. https://doi.org/10.1007/s11864-015-0371-3 Yang I, Han S, Sughrue M, Tihan T, Parsa A (2011) Immune cell infiltrate differences in pilocytic astrocytoma and glioblastoma: evidence of distinct immunological microenvironments that reflect tumor biology. J Neurosurg 115:505–511. https://doi.org/10.3171/2011.4.JNS101172 Bienkowski M, Preusser M (2015) Prognostic role of tumor-infiltrating cells in brain tumors: literature review. Curr Opin Neurol 28(6):647–658. https://doi.org/10.1097/WCO.0000000000000251 Kmiecik J, Poli A, Brons N, Waha A, Eide G, Enger P, Zimmer J, Chekenya M (2013) Elevated CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and the systemic level. J NeuroImmunol 264:71–83. https://doi.org/10.1016/j.jneuroim.2013.08.013 Jacobs J, Idema A, Bol K, Grotenhuis A, Vries J, Wesseling P, Ademma G (2010) Prognostic significance and mechanism of Treg infiltration in human brain tumors. J Neuroimmunol 255:195–199. https://doi.org/10.1016/j.jneuroim.2010.05.020 Komohara Y, Horlad H, Fujiwara Y, Bai B, Nakagawa T, Suzu S, Nakamura H, Kuratsu J, Takeya M (2012) Importance of direct macrophage-tumor cell interaction on progression of human glioma. Cancer Sci 103(12):2165–2172. https://doi.org/10.1111/cas.12015 Donson M, Birks D, Schittone S, Kleinschmidt-DeMasters B, Sun D, Hemenway M, Handler M, Waziri A, Wang M, Foreman N (2012) Increased immune gene expression and immune cell infiltration in high grade astrocytoma distinguish long from short term survivors. J Immunol 189(4):1920–1927. https://doi.org/10.4049/jimmunol.1103373 Lohr J, Ratliff T, Huppertz A, Ge Y, Dictus C, Ahmadi R, Grau L, Hiroaka N, Eckstein V, Ecker R, Korff T, von Diemling A, Unterberg A, Beckhove P, Herold-Mende C (2011) Effector T cell infiltration positively impacts survival of glioblastoma patients and is impaired by tumor-derived TGF-beta. Clin Cancer Res 17(13):4296–4308. https://doi.org/10.1158/1078-0432.CCR-10-2557 Yang I, Tihan T, Han S, Wrensch M, Wiencke J, Sughrue M, Parsa A (2010) CD8+ T cell infiltrate in newly diagnosed glioblastoma associated with long term survival. J Clin Neurosci 17(11):1381–1385. https://doi.org/10.1016/j.jocn.2010.03.031 Prosniak M, Harshyne L, Andrews D, Kenyon L, Bedelbaeva K, Apanasovich T, Heber-Katz E, Cotzia P, Hooper D (2013) Glioma grade is associated with the accumulation and activity of cells bearing M2 monocyte markers. Clin Canc Res 19(14):3776–3786. https://doi.org/10.1158/1078-0432.CCR-12-1940 Berghoff A, Kiesel B, Widhalm G, Rajky O, Ricken G, Wohrer A, Dieckmann K, Filipits M, Brandsetter A, Weller M, Kurscheid S, Hegi M, Zielinksi C, Marosi C, Hainfellner J, Preusser M, Wick W (2015) Programmed cell death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol 17(8):1064–1075. https://doi.org/10.1093/neuonc/nou307 Rooney M, Shukla S, Wu C, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61. https://doi.org/10.1016/j.cell.2014.12.033 Van Allen E, Miao D, Schilling B, Shukla S, Blank C, Zimmer L, Sucker A, Hillen U, Guekes Foppen M, Goldinger S, Utikal J, Hassel J, Weide B, Kaehler K, Loquai C, Mohr P, Gutzmer P, Dummer R, Gabriel S, Wu C, Schadendorf D, Garraway L (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350(6257):207–211 Rizvi N, Hellman M, Snyder A, Kvistborg P, Makarov V, Havel J, Lee W, Yuan J, Wong P, Ho T, Miller M, Rekhtman N, Moreira A, Ibrahim F, Bruggeman C, Gasmi B, Zappasodi R, Maeda Y, Sander C, Garon E, Merghoub T, Wolchok J, Schumacker T, Chan T (2015) Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348(6230):124–126. https://doi.org/10.1126/science.aaa1348 Lawrence M, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, Kiezun A, Hammerman PS, McKenna A, Drier Y, Zou L, Ramos AH, Pugh TJ, Stransky N, Helman E, Kim J, Sougnez C, Ambrogio L, Nickerson E, Shefler E, Cortes ML, Auclair D, Saksena G, Voet D, Noble M, DiCara D, Lin P, Lichetsein L, Heiman DI, Fennell T, Imielinski M, Hernandez B, Hodis E, Baca S, Dulak A, Lohr J, Landau D, Wu C, Melendez-Zajgla J, Hidalgo-Miranda A, Koren A, McCarroll S, Mora J, Lee R, Crompton B, Onofrio R, Parkin M, Winckler W, Ardlie K, Gabriel S, Roberts C, Biegel J, Stegmaier K, Bass A, Garraway L, Meyerson M, Golub T, Gordenin D, Sunyaev S, Lander E, Getz G (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218. https://doi.org/10.1038/nature12213 Brown S, Warren R, Gibb E, Martin S, Spinelli J, Nelson B, Holt R (2015) Neo-antigens predicted by cancer genome meta-analysis correlate with increased patient survival. Genome Res 24(5):743–750. https://doi.org/10.1101/gr.165985.113 Griesinger A, Birks D, Donson A, Amani V, Hoffman L, Waziri A, Wang M, Handler M, Foreman N (2013) Characterization of distinct immunophenotypes across pediatric brain tumor types. J Immunol 191(9):4880–4888. https://doi.org/10.4049/jimmunol.1301966 Griesinger A, Donson A, Foreman N (2014) Immunotherapeutic implications of the immunophenotype of pediatric brain tumors. OncoImmunology 3(1):e27256. https://doi.org/10.4161/onci.27256 Koyama S, Akbay E, Li Y, Herter-Sprie G, Buckowski Z, Richards W, Gandhi L, Redig A, Rodig S, Asahina H, Jones R, Kulkami M, Kuraguchi M, Palakurthi S, Fecci P, Johnson B, Janne P, Engleman J, Gangadharan S, Costa D, Freeman G, Bueno R, Hodi F, Dranoff G, Wong K, Hammerman P (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 17(7):10501. https://doi.org/10.1038/ncomms10501 Du Z, Abedalthagafi M, Aizer A, McHenry A, Sun H, Bray MA, Viramontes O, Machaidze R, Brastianos P, Reardon D, Dunn I, Freeman G, Ligon K, Carpenter A, Alexander B, Agar N, Rodig S, Bradshaw E, Santagata S (2014) Increased PDL1 expression of the immune modulatory molecular PD-L1 (CD274) in anaplastic meningioma. Oncotarget 6(7):4704–4716. https://doi.org/10.18632/oncotarget.3082 Robins H, Campregher P, Srivastava S, Wacher A, Turtle C, Kahsai O, Riddell S, Warren E, Carlson C (2009) Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells. Blood 114(19):4099–4107. https://doi.org/10.1182/blood-2009-04-217604 Carlson C, Emerson S, Sherwood A, Desmarais C, Chung M, Parsons J, Steen M, LaMadrid-Herrmannsfeldt M, Williamson D, Livingston R, Wu E, Wood B, Rieder M, Robins H (2013) Using synthetic templates to design unbiased multiplex PCR assay. Nat Commun 4:2680. https://doi.org/10.1038/ncomms3680 Robins H, Desmarais C, Matthis J, Livingston R, Andriesen J, Reijonen H, Nepom G, Yee C, Cerosaletti K (2012) Ultra-sensitive detection of rare T cell clones. J Immunol Methods 375(1–2):14–19. https://doi.org/10.1016/j.jim.2011.09.001 Kirsch I, Vignali M, Robins H (2015) T cell-receptor profiling in cancer. Mol Oncol 9(10):2063–2070. https://doi.org/10.1016/j.molonc.2015.09.003 Ramkissoon SH, Bandopadhayay P, Hwang J, Ramkissoon LA, Greenwald NF, Schumacher SE, O’Rourke R, Pinches N, Ho P, Malkin H, Sinai C, Filbin M, Plant A, Bi WL, Chang MS, Yang E, Wright KD, Manley PE, Ducar M, Alexandrescu S, Lidov H, Delalle I, Goumnerova LC, Church AJ, Janeway KA, Harris MH, MacConnell LE, Folkerth RD, Lindeman NI, Stiles CD, Kieran MW, Ligon AH, Santagata S, Dubuc AM, Chi SN, Beroukhim R, Ligon KL (2017) Clinical targeted exome-based sequencing in combination with genome wide copy number profiling: precision medicine based analysis of 203 pediatric brain tumors. Neuro Oncol. https://doi.org/10.1093/neuonc/now294 Sholl LM, Do K, Shivdasani P, Cerami E, Dubuc AM, Kuo FC, Garcia EP, Jia Y, Davineni P, Abo RP, Pugh TJ, van Hummelen P, Thomer AR, Ducar M, Berger AH, Nishino M, Janeway KA, Church A, Harris M, Ritterhouse LL, Campbell JD, Rojas-Rudilla V, Ligon AH, Ramkissoon S, Cleary JM, Matulonis U, Oxnard GR, Chao R, Tassell V, Christensen J, Hahn WC, Kantoff PW, Kwiatkowski DJ, Johnson BE, Meyerson M, Garraway LA, Shapiro GI, Rollins BJ, Lindeman NI, MacConail LE (2016) Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI Insight 1(19):e87062. https://doi.org/10.1172/jci.insight.87062 Fecci PE, Mitchell DA, Whitesides JF, Xie W, Friedman AH, Archer GE, Herndon JE 2nd, Bigner DD, Dranoff G, Sampson JH (2006) Increased regulatory T cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 66(6):3294–3302. https://doi.org/10.1158/0008-5472CAN-05-3773 Ilie M, Hofman V, Dietel M, Soria JC, Hofman P (2016) Assessment of the PDL1 status by immunohistochemistry: challenges and perspectives for therapeutic strategies in lung cancer patients. Virchows Arch 468(5):511–525. https://doi.org/10.1007/s00428-016-1910-4 Sacher AG, Gandhi L (2016) Biomarkers for the clinical use of PD-1/PDL1 inhibitors in non-small cell lung cancer: a review. JAMA Oncol 2(9):1217–1222. https://doi.org/10.1001/jamaoncol.2016.0639