Transfer of efficient anti-melanocyte T cells from vitiligo donors to melanoma patients as a novel immunotherapeutical strategy

Journal of Autoimmune Diseases - Tập 2 - Trang 1-5 - 2005
Belinda Palermo1, Silvia Garbelli1, Stefania Mantovani1, Claudia Giachino1
1Experimental Immunology Laboratory, IRCCS Maugeri Foundation, Pavia, Italy

Tóm tắt

Vitiligo is a relatively common progressive depigmentary condition that is believed to be due to the autoimmune-mediated loss of epidermal melanocytes. High frequencies of self-reactive T lymphocytes directed toward melanocyte differentiation antigens are found in vitiligo patients and might be directly responsible for the pathogenesis of the disease. An interesting aspect of vitiligo is its relation to melanoma: cytotoxic T lymphocytes directed to self antigens shared by normal melanocytes and melanoma cells are found in both conditions, but the resulting immune reactions are completely different. From this standpoint, the selective destruction of pigment cells that occurs in cases of vitiligo is the therapeutic goal sought in melanoma research. Our working hypothesis is that vitiligo patients might represent a unique source of therapeutic cells to be used in allo-transfer for HLA-matched melanoma patients. The adoptive transfer of ex-vivo generated autologous tumor-specific T cells is a therapy that has met with only limited success, essentially because of inability to isolate therapeutically valuable T cells from the majority of tumor patients. Ideally, model systems where strong and efficient responses against the same (tumor) antigens are achieved would represent a better source of therapeutic cells. We believe it is possible to identify one such model in the melanoma-vitiligo dichotomy: T lymphocytes specific for different melanocyte differentiation antigens are found in vitiligo and represent the effective anti-melanocyte reactivity that is often ineffective in melanoma. Melanocyte-specific T cell clones can be isolated from the peripheral blood of vitiligo patients and tested for their capacity to efficiently expand in vitro without loosing their cytotoxic activity and to migrate to the skin. Cytotoxicity against melanoma patients' non-tumor cells can also be tested. In addition, it would be interesting to attempt an in vivo animal model. If the results obtained from these validation steps will be satisfactory, it might be possible to plan the clinical grade preparation of relevant clones for transfer. When translated into a clinical trial, the possibility of in vitro selecting few effective tumor-specific T cell clones for infusion, inherent with this approach, could enhance the therapeutic graft-versus-tumor effect while possibly decreasing the risk of graft-versus-host disease.

Tài liệu tham khảo

Njoo MD, Westerhof W: Vitiligo. Pathogenesis and treatment. Am J Clin Dermatol. 2001, 2: 167-181. Review Bystryn JC: Immune mechanisms in vitiligo. Clin Dermatol. 1997, 15: 853-861. 10.1016/S0738-081X(97)00126-0. Review Le Poole IC, Wankowicz-Kalinska A, van den Wijngaard RM, Nickoloff BJ, Das PK: Autoimmune aspects of depigmentation in vitiligo. J Invest Dermatol Symp Proc. 2004, 9: 68-72. 10.1111/j.1087-0024.2004.00825.x. Ongenae K, van Geel N, Naeyaert J-M: Evidence for an autoimmune pathogenesis of vitiligo. Pigment Cell Res. 2003, 16: 90-100. 10.1034/j.1600-0749.2003.00023.x. van den Wijngaard R, Wankowicz-Kalinska A, Pals S, Weening J, Das P: Autoimmune melanocyte destruction in vitiligo. Lab Invest. 2001, 81: 1061-1067. Anichini A, Maccalli C, Mortarini R, Salvi S, Mazzocchi A, Squarcina P, Herlyn M, Parmiani G: Melanoma cells and normal melanocytes share antigens recognized by HLA-A2-restricted cytotoxic T cell clones from melanoma patients. J Exp Med. 1993, 177: 989-998. 10.1084/jem.177.4.989. Le Poole IC, Mutis T, van den Wijngaard RM, Westerhof W, Ottenhoff T, de Vries RR, Das PK: A novel, antigen-presenting function of melanocytes and its possible relationship to hypopigmentary disorders. J Immunol. 1993, 151: 7284-7292. Meije CB, Mooi WJ, Le Poole IC, Van Muijen GN, Das PK: Micro-anatomy related antigen expression in melanocytic lesions. J Pathol. 2000, 190: 572-578. 10.1002/(SICI)1096-9896(200004)190:5<572::AID-PATH570>3.0.CO;2-9. Kawakami Y, Eliyahu S, Sakaguchi K, Robbins PF, Rivoltini L, Yannelli JR, Appella E, Rosenberg SA: Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med. 1994, 180: 347-352. 10.1084/jem.180.1.347. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM: Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996, 274: 94-96. 10.1126/science.274.5284.94. Ogg GS, Dunbar R, Romero P, Chen JL, Cerundolo V: High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J Exp Med. 1998, 188: 1203-1208. 10.1084/jem.188.6.1203. Ogg GS: Detection of antigen-specific cytotoxic T lymphocytes: significance for investigative dermatology. Clin Exp Dermatol. 2000, 25: 312-316. 10.1046/j.1365-2230.2000.00651.x. Review Parmiani G: Melanoma antigens and their recognition by T cells. Keio J Med. 2001, 50: 86-90. Review Palmowski M, Salio M, Dunbar RP, Cerundolo V: The use of HLA class I tetramers to design a vaccination strategy for melanoma patients. Immunol Rev. 2002, 188: 155-163. 10.1034/j.1600-065X.2002.18814.x. Review Becker JC, Guldberg P, Zeuthen J, Brocker EB, Straten PT: Accumulation of identical T cells in melanoma and vitiligo-like leukoderma. J Invest Dermatol. 1999, 113: 1033-1038. 10.1046/j.1523-1747.1999.00805.x. Wankowicz-Kalinska A, van den Wijngaard RM, Tigges BJ, Westerhof W, Ogg GS, Cerundolo V, Storkus WJ, Das PK: Immunopolarization of CD4+ and CD8+ T cells to Type-1-like is associated with melanocyte loss in human vitiligo. Lab Invest. 2003, 83: 683-695. Buckley WR, Lobitz WC: [Vitiligo with a raised inflammatory border.]. AMA Arch Derm Syphilol. 1953, 67: 316-320. Michaelsson G: Vitiligo with raised borders. Report of two cases. Acta Derm Venereol. 1968, 48: 158-161. Le Poole IC, van den Wijngaard RM, Westerhof W, Das PK: Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance. Am J Pathol. 1996, 148: 1219-1228. al Badri AM, Todd PM, Garioch JJ, Gudgeon JE, Stewart DG, Goudie RB: An immunohistological study of cutaneous lymphocytes in vitiligo. J Pathol. 1993, 170: 149-155. 10.1002/path.1711700209. Abdel-Naser MB, Kruger-Krasagakes S, Krasagakis K, Gollnick H, Abdel-Fattah A, Orfanos CE: Further evidence for involvement of both cell mediated and humoral immunity in generalized vitiligo. Pigment Cell Res. 1994, 7: 1-8. van den Wijngaard R, Wankowicz-Kalinska A, Le Poole C, Tigges B, Westerhof W, Das P: Local immune response in skin of generalized vitiligo patients. Destruction of melanocytes is associated with the prominent presence of CLA+ T cells at the perilesional site. Lab Invest. 2000, 80: 1299-1309. Lang KS, Caroli CC, Muhm A, Wernet D, Moris A, Schittek B, Knauss-Scherwitz E, Stevanovic S, Rammensee HG, Garbe C: HLA-A2 restricted, melanocyte-specific CD8(+) T lymphocytes detected in vitiligo patients are related to disease activity and are predominantly directed against MelanA/MART1. J Invest Dermatol. 2001, 116: 891-897. 10.1046/j.1523-1747.2001.01363.x. Palermo B, Campanelli R, Garbelli S, Mantovani S, Lantelme E, Brazzelli V, Ardigo M, Borroni G, Martinetti M, Badulli C, et al: Specific cytotoxic T lymphocyte responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo by the use of major histocompatibility complex/peptide tetramers: the role of cellular immunity in the etiopathogenesis of vitiligo. J Invest Dermatol. 2001, 117: 326-332. 10.1046/j.1523-1747.2001.01408.x. Mantovani S, Palermo B, Garbelli S, Campanelli R, Robustelli Della Cuna G, Gennari R, Benvenuto F, Lantelme E, Giachino C: Dominant TCR-alpha requirements for a self antigen recognition in humans. J Immunol. 2002, 169: 6253-6260. Mantovani S, Garbelli S, Palermo B, Campanelli R, Brazzelli V, Borroni G, Martinetti M, Benvenuto F, Merlini G, Robustelli della Cuna G, et al: Molecular and functional bases of self-antigen recognition in long-term persistent melanocyte-specific CD8+ T cells in one vitiligo patient. J Invest Dermatol. 2003, 121: 308-134. 10.1046/j.1523-1747.2003.12368.x. Ferrone S, Marincola FM: Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol Today. 1995, 16: 487-494. 10.1016/0167-5699(95)80033-6. Review Hahne M, Rimoldi D, Schroter M, Romero P, Schreier M, French LE, Schneider P, Bornand T, Fontana A, Lienard D, et al: Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science. 1996, 274: 1363-1366. 10.1126/science.274.5291.1363. Maeurer MJ, Gollin SM, Martin D, Swaney W, Bryant J, Castelli C, Robbins P, Parmiani G, Storkus WJ, Lotze MT: Tumor escape from immune recognition: lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest. 1996, 98: 1633-1641. Yee C, Thompson JA, Roche P, Byrd DR, Lee PP, Piepkorn M, Kenyon K, Davis MM, Riddell SR, Greenberg PD: Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of t cell-mediated vitiligo. J Exp Med. 2000, 192: 1637-1644. 10.1084/jem.192.11.1637. Le Gal FA, Avril MF, Bosq J, Lefebvre P, Deschemin JC, Andrieu M, Dore MX, Guillet JG: Direct evidence to support the role of antigen-specific CD8(+) T cells in melanoma-associated vitiligo. J Invest Dermatol. 2001, 117: 1464-1470. 10.1046/j.0022-202x.2001.01605.x. Rivoltini L, Carrabba M, Huber V, Castelli C, Novellino L, Dalerba P, Mortarini R, Arancia G, Anichini A, Fais S, et al: Immunity to cancer: attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev. 2002, 188: 97-113. 10.1034/j.1600-065X.2002.18809.x. Review Romero P, Valmori D, Pittet MJ, Zippelius A, Rimoldi D, Levy F, Dutoit V, Ayyoub M, Rubio-Godoy V, Michielin O, et al: Antigenicity and immunogenicity of Melan-A/MART-1 derived peptides as targets for tumor reactive CTL in human melanoma. Immunol Rev. 2002, 188: 81-96. 10.1034/j.1600-065X.2002.18808.x. Review Mandelcorn-Monson RL, Shear NH, Yau E, Sambhara S, Barber BH, Spaner D, DeBenedette MA: Cytotoxic T lymphocyte reactivity to gp100, MelanA/MART-1, and tyrosinase, in HLA-A2-positive vitiligo patients. J Invest Dermatol. 2003, 121: 550-556. 10.1046/j.1523-1747.2003.12413.x. Das PK, van den Wijngaard RM, Wankowicz-Kalinska A, Le Poole IC: A symbiotic concept of autoimmunity and tumour immunity: lessons from vitiligo. Trends in Immunology. 2001, 22: 130-136. 10.1016/S1471-4906(00)01844-5. Ramirez-Montagut T, Turk MJ, Wolchok JD, Guevara-Patino JA, Houghton AN: Immunity to melanoma: unraveling the relation of tumor immunity and autoimmunity. Oncogene. 2003, 22: 3180-3187. 10.1038/sj.onc.1206462. Wankowicz-Kalinska A, Le Poole C, van den Wijngaard R, Storkus WJ, Das PK: Melanocyte-specific immune response in melanoma and vitiligo: two faces of the same coin?. Pigment Cell Res. 2003, 16: 254-260. 10.1034/j.1600-0749.2003.00038.x. Review Lengagne R, Le Gal FA, Garcette M, Fiette L, Ave P, Kato M, Briand JP, Massot C, Nakashima I, Renia L, et al: Spontaneous vitiligo in an animal model for human melanoma: role of tumor-specific CD8+ T cells. Cancer Res. 2004, 64: 1496-1501. Rivoltini L, Kawakami Y, Sakaguchi K, Southwood S, Sette A, Robbins PF, Marincola FM, Salgaller ML, Yannelli JR, Appella E, et al: Induction of tumor-reactive CTL from peripheral blood and tumor-infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J Immunol. 1995, 154: 2257-2265. Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH, White DE: Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst. 1994, 86: 1159-1166. Juranic ZD, Stanojevic-Bakic N, Zizak Z, Babovic N, Radovic-Kovacevic V, Stanojkovic T, Dzodic R: Antimelanoma immunity in vitiligo and melanoma patients. Neoplasma. 2003, 50: 305-309.