Evolution of metabolic networks: a computational frame-work
Tóm tắt
The metabolic architectures of extant organisms share many key pathways such as the citric acid cycle, glycolysis, or the biosynthesis of most amino acids. Several competing hypotheses for the evolutionary mechanisms that shape metabolic networks have been discussed in the literature, each of which finds support from comparative analysis of extant genomes. Alternatively, the principles of metabolic evolution can be studied by direct computer simulation. This requires, however, an explicit implementation of all pertinent components: a universe of chemical reactions upon which the metabolism is built, an explicit representation of the enzymes that implement the metabolism, a genetic system that encodes these enzymes, and a fitness function that can be selected for. We describe here a simulation environment that implements all these components in a simplified way so that large-scale evolutionary studies are feasible. We employ an artificial chemistry that views chemical reactions as graph rewriting operations and utilizes a toy-version of quantum chemistry to derive thermodynamic parameters. Minimalist organisms with simple string-encoded genomes produce model ribozymes whose catalytic activity is determined by an ad hoc mapping between their secondary structure and the transition state graphs that they stabilize. Fitness is computed utilizing the ideas of metabolic flux analysis. We present an implementation of the complete system and first simulation results. The simulation system presented here allows coherent investigations into the evolutionary mechanisms of the first steps of metabolic evolution using a self-consistent toy universe.
Tài liệu tham khảo
Bentley P, Kumar S: Three Ways to Grow Designs: A Comparison of Evolved Embryogenies for a Design Problem. In Genetic and Evolutionary Computation Conference. Massachusetts: Morgan Kaufmann; 1999:35–43.
Banzhaf W: On the Dynamics of an Artificial Regulatory Network. In Advances in Artificial Life, of LNCS. Volume 2801. Edited by: Banzhaf W, Christaller T, Dittrich P, Kim JT, Ziegler J. Heidelberg, Germany: Springer-Verlag; 2003:217–227. full_text
Eggenberg P: Evolving morphologies of simulated 3 D organisms based on differential gene expression. In Proc. ECAL97. Edited by: Husbands P, Harvey I. The MIT Press/Bradford Books; 1997:205–213.
Geard N, Wiles J: Structure and dynamics of a gene network model. In Proc. CEC2003. Edited by: Sarker R, Reynolds R, Abbass H, Tan KC, McKay B, Essam D, Gedeon T. IEEE Press; 2003:199–206.
Reil T: Dynamics of gene expression in an artificial genome - inplications for biological and artificial ontogeny. In Proc. ECAL99, of Lecture Notes in Computer Science. Volume 1674. Edited by: Floreano D, Nicoud JD, Mondada F. Berlin: Springer-Verlag; 1999:457–466. full_text
Fontana W: Algorithmic Chemistry. In Artificial Life II. Edited by: Langton CG, Taylor C, Farmer JD, Rasmussen S. Redwood City, CA: Addison-Wesley; 1992:159–210.
Fontana W, Buss LW: What would be conserved if `the tape were played twice'? Proc Natl Acad Sci USA 1994, 91: 757–761. 10.1073/pnas.91.2.757
Bagley RJ, Farmer JD: Spontaneous emergence of a metabolism. In Artificial Life II, Santa Fe Institute Studies in the Sciences of Complexity. Edited by: Langton CG, Taylor C, Farmer JD, Rasmussen S. Redwood City, CA: Addison-Wesley; 1992:93–141.
Banzhaf W, Dittrich P, Eller B: Self-organization in a system of binary strings with spatial interactions. Physica D 1999, 125: 85–104. 10.1016/S0167-2789(98)00238-3
Speroni di Fenizio P: A less abstract artificial chemistry. In Artificial Life VII. Edited by: Bedau M, McCaskill J, Packard N, Rasmussen S. Cambridge, MA: MIT Press; 2000:49–53.
Ugi I, Stein N, Knauer M, Gruber B, Bley K, Weidinger R: New Elements in the Representation of the Logical Structure of Chemistry by Qualitative Mathematical Models and Corresponding Data Structures. Top Curr Chem 1993, 166: 199–233. full_text
Thürk M: Ein Modell zur Selbstorganisation von Automatenalgorithmen zum Studium molekularer Evolution. PhD thesis. Universität Jena, Germany; 1993.
McCaskill JS, Niemann U: Graph Replacement Chemistry for DNA Processing. In DNA Computing, of Lecture Notes in Computer Science. Volume 2054. Edited by: Condon A, Rozenberg G. Berlin, D: Springer; 2000:103–116. full_text
Rossellá F, Valiente G: Chemical graphs, chemical reaction graphs, and chemical graph transformation. Electron Notes Theor Comput Sci 2005, 127: 157–166. 10.1016/j.entcs.2004.12.033
Dittrich P, Ziegler J, Banzhaf W: Artificial chemistries-a review. Artif Life 2001, 7: 225–75. 10.1162/106454601753238636
Suzuki H, Dittrich P: Artificial chemistry. Artif Life 2009, 15: 1–3. 10.1162/artl.2009.15.1.15100
Centler F, Kaleta C, di Fenizio PS, Dittrich P: Computing chemical organizations in biological networks. Bioinformatics 2008, 24: 1611–1618. 10.1093/bioinformatics/btn228
Grzybowski BA, Bishop KJM, Kowalczyk B, Wilmer CE: The wired universe of organic chemistry. Nature Chemistry 2009, 1: 31–36. 10.1038/nchem.136
Cayley A: On the Mathematical Theory of Isomers. Philos Mag 1874, 47: 444–446.
Sylvester JJ: On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantics, with three appendices. Amer J Math 1878, 1: 64–128. 10.2307/2369436
Heidrich D, Kliesch W, Quapp W: Properties of Chemically Interesting Potential Energy Surfaces, of Lecture Notes in Chemistry. Volume 56. Berlin: Springer-Verlag; 1991.
Benkö G, Flamm C, Stadler PF: A graph-based toy model of chemistry. J Chem Inf Comp Sci 2003, 43: 1085–93.
Gillespie RJ, Nyholm RS: Inorganic Stereochemistry. Quart Rev Chem Soc 1957, 11: 339–380. 10.1039/qr9571100339
Hoffmann R: An Extended Hückel Theory. I. Hydrocarbons. J Chem Phys 1963, 39: 1397–1412. 10.1063/1.1734456
Benkö G, Flamm C, Stadler PF: Generic Properties of Chemical Networks: Artificial Chemistry Based on Graph Rewriting. In Advances in Artificial Life, of Lecture Notes in Computer Science. Volume 2801. Edited by: Banzhaf W, Christaller T, Dittrich P, Kim JT, Ziegler J. Heidelberg, Germany: Springer-Verlag; 2003:10–20. full_text
Benkö G, Flamm C, Stadler PF: Multi-Phase Artificial Chemistry. In The Logic of Artificial Life: Abstracting and Synthesizing the Principles of Living Systems. Edited by: Schaub H, Detje F, Brüggemann U. Berlin: IOS Press, Akademische Verlagsgesellschaft; 2004:16–22.
Klopman G: Chemical reactivity and the concept of charge- and frontier-controlled reactions. J Am Chem Soc 1968, 90: 223–243. 10.1021/ja01004a002
Salem L: Intermolecular Orbital Theory of the Interaction between Conjugated Systems. I. General Theory. J Am Chem Soc 1968, 90: 543–552. 10.1021/ja01005a001
Salem L: Intermolecular Orbital Theory of the Interaction between Conjugated Systems. II. Thermal and Photochemical Calculations. J Am Chem Soc 1968, 90: 553–566. 10.1021/ja01005a002
Wodrich MD, Corminboeuf C, Schreiner PR, Fokin AA, von Ragué Schleyer P: How accurate are DFT treatments of organic energies? Org Lett 2007, 9: 1851–1854. 10.1021/ol070354w
Brittain DRB, Lin CY, Gilbert ATB, Izgorodina EI, Gill PMW, Coote ML: The role of exchange in systematic DFT errors for some organic reactions. Physical chemistry chemical physics: PCCP 2009, 11: 1138–1142.
Gasteiger J, Rudolph C, Sadowski J: Automatic Generation of 3 D Atomic Coordinates for Organic Molecules. Tetrahedron Comp Method 1990, 3: 537–547. 10.1016/0898-5529(90)90156-3
Fujita S: Description of Organic Reactions Based on Imaginary Transition Structures. 1. Introduction of new concepts. J Chem Inf Comput Sci 1986, 26: 205–212.
Hendrickson JB: Comprehensive System for Classification and Nomenclature of Organic Reactions. J Chem Inf Comput Sci 1997, 37: 852–860.
Faulon JL, Sault AG: Stochastic generator of chemical structure. 3. Reaction network generation. J Chem Inf Comput Sci 2001,41(4):894–908.
Félix L, Rosselló F, Valiente G: Efficient Reconstruction of Metabolic Pathways by Bidirectional Chemical Search. Bull Math Biol 2009, 71: 750–769. 10.1007/s11538-008-9380-8
Crabtree JD, Mehta DP: Automated Reaction Mapping. J Exp Algor 2009, 13: 1–29.
Ullmann JR: An Algorithm for Subgragraph Isomorphism. J ACM 1976, 23: 31–42. 10.1145/321921.321925
Kotera M, Hattori M, Oh MA, Yamamoto R, Komeno T, Yabuzaki J, Tonomura K, Goto S, Kanehisa M: RPAIR: a reactant-pair database representing chemical changes in enzymatic reactions. Genome Inform 2004, 15: P062.
Nagl M: Graph-Grammatiken, Theorie, Implementierung, Anwendung. Braunschweig: Vieweg; 1979.
Cordella LP, Foggia P, Sansone C, Vento M: Performance Evaluation of the VF Graph Matching Algorithm. ICIAP 1999, 1172–1177.
Cordella LP, Foggia P, Sansone C, Vento M: An Improved Algorithm for Matching Large Graphs. 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition 2001, 149–159.
Weininger D: SMILES, a chemical language and information system. 1. introduction to methodology and encoding rules. J Chem Inf Comp Sci 1988, 28: 31–36.
Mann M, Flamm C: Graph Grammar Library (GGL).2010. [http://www.tbi.univie.ac.at/TBI/software.html]
Read RC: Every one a winner. Ann Discr Math 1978, 2: 107–120. full_text
Kun A, Papp B, Szathmary E: Computational identification of obligatorily autocatalytic replicators embedded in metabolic networks. Genome Biol 2008, 9: R51. 10.1186/gb-2008-9-3-r51
Weininger D, Weininger A, Weininger JL: SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Inf Comput Sci 1989, 29: 97–101.
Gesteland RF, Cech TR, Atkins JF: The RNA World. 3rd edition. Woodbury, NY: Cold Spring Harbor Laboratories Press; 2006.
Müller UF: Re-creating an RNA world. Cell Mol Life Sci 2006, 63: 1278–1293. 10.1007/s00018-006-6047-1
Chen X, Li N, Ellington AD: Ribozyme Catalysis of Metabolism in the RNA World. Chemistry & Biodiv 2007, 4: 633–655.
Talini G, Gallori E, Maurel MC: Natural and unnatural ribozymes: Back to the primordial RNA world. Res Microbiol 2009, 160: 457–465. 10.1016/j.resmic.2009.05.005
Stephan-Otto Attolini C, Stadler PF, Flamm C: CelloS: a Multi-level Approach to Evolutionary Dynamics. In Advances in Artificial Life: 8th European Conference, ECAL 2005, of Lect. Notes Comp. Sci. Volume 3630. Edited by: Capcarrere MS, Freitas AA, Bentley PJ, Johnson CG, Timmis J. Berlin: Springer Verlag; 2005:500–509.
Flamm C, Endler L, Müller S, Widder S, Schuster P: A minimal and self-consistent in silico cell model based on macromolecular interactions. Philos Trans R Soc Lond B Biol Sci 2007, 362: 1831–1839. 10.1098/rstb.2007.2075
Fontana W, Konings DA, Stadler PF, Schuster P: Statistics of RNA secondary structures. Biopolymers 1993,33(9):1389–404. 10.1002/bip.360330909
Mathews DH, Sabina J, Zuker M, Turner H: Expanded Sequence Dependence of Thermodynamic Parameters Provides Robust Prediction of RNA Secondary Structure. J Mol Biol 1999, 288: 911–940. 10.1006/jmbi.1999.2700
Hofacker IL, Fontana W, Stadler PF, Bonhoeffer S, Tacker M, Schuster P: Fast Folding and Comparison of RNA Secondary Structures (The Vienna RNA Package). Monatsh Chem 1994, 125: 167–188. 10.1007/BF00818163
Hofacker IL: The Vienna RNA Secondary Structure Server. Nucl Acids Res 2003, 31: 3429–3431. 10.1093/nar/gkg599
Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL: The Vienna RNA Websuite. Nucl Acids Res 2008, 36: W70-W74. 10.1093/nar/gkn188
Fontana W, Schuster P: Continuity in evolution: on the nature of transitions. Science 1998, 280: 1451–5. 10.1126/science.280.5368.1451
Herges R: Organizing Principle of Complex Reactions and Theory of Coarctate Transition States. Angew Chem Int Ed 1994, 33: 255–276. 10.1002/anie.199402551
Hendrickson JB, Miller TM: Reaction indexing for reaction databases. J Chem Inf Comput Sci 1990, 30: 403–408.
Herges R: Coarctate Transition States: The Discovery of a Reaction Principle. J Chem Inf Comput Sci 1994, 34: 91–102.
Ullrich A, Flamm C: Functional Evolution of Ribozyme-Catalyzed Metabolisms in a Graph-Based Toy-Universe. In Proceedings of the 6th International Conference on Computational Methodes in Systems Biology (CSMB), of Lect. Notes Bioinf. Volume 5307. Edited by: Istrail S. Berlin: Springer; 2008:28–43.
Fontana W, Stadler PF, Tarazona P, Weinberger ED, Schuster P: RNA folding and combinatory landscapes. Physical Review E 1993, 47: 2083–2099. 10.1103/PhysRevE.47.2083
Ullrich A: Evolution of Metabolism in a graph-based Toy-Universe. PhD thesis. Universität Leipzig, Germany; 2008.
Stadler PF: Fitness Landscapes Arising from the Sequence-Structure Maps of Biopolymers. J Mol Struct 1999,463(1–2):7–19.
Ullrich A, Flamm C: A Sequence-to-Function Map for Ribozyme-catalyzed Metabolisms. ECAL, Lect Notes Comp Sci 2009, in press.
Palsson BO: Systems Biology: Properties of Reconstructed Networks. New York, NY, USA: Cambridge University Press; 2006.
Gagneur J, Klamt S: Computation of elementary modes: a unifying framework and the new binary approach. BMC Bioinformatics 2004, 5: 175. 10.1186/1471-2105-5-175
Balaban AT: Highly discriminating distance-based topological index. Chem Phys Lett 1982, 89: 399–404. 10.1016/0009-2614(82)80009-2
Wiener H: Structural Determination of Para n Boiling Points. J Am Chem Soc 1947, 69: 17–20. 10.1021/ja01193a005
Axelrod R: The Complexity of Cooperation: Agent-Based Models of Competition and Collaboration. Princeton, NJ: Prince-ton University Press; 1997.
Orr HA: The evolutionary genetics of adaptation: a simulation study. Genet Res Camb 1999, 74: 207–214. 10.1017/S0016672399004164
Pfeiffer T, Soyer OS, Bonhoeffer S: The Evolution of Connectivity in Metabolic Networks. PLoS Biol 2005, 3: e228. 10.1371/journal.pbio.0030228
Rohrschneider M, Heine C, Reichenbach A, Kerren A, Scheuermann G: A Novel Grid-based Visualization Approach for Metabolic Networks with Advanced Focus and Context View. In 17th International Symposium on Graph Drawing (GD09), Lect. Notes Comp. Sci. Edited by: Emden Gansner DE. Springer; 2009.
Díaz-Mej a JJ, Pérez-Rueda E, Segovia L: A network perspective on the evolution of metabolism by gene duplication. Genome Biol 2007, 8: R26. 10.1186/gb-2007-8-2-r26
Papp B, Teusink B, Notebaart RA: A critical view of metabolic network adaptations. HFSP J 2009, 3: 24–35. 10.2976/1.3020599
Fani R, Fondi M: Origin and evolution of metabolic pathways. Phys Life Rev 2009, 6: 23–52. 10.1016/j.plrev.2008.12.003
Horowitz NH: On the evolution of biochemical syntheses. Proc Natl Acad Sci USA 1945, 31: 153–157. 10.1073/pnas.31.6.153
Granick S: Speculations on the origins and evolution of photosynthesis. Ann NY Acad Sci 1957, 69: 292–308. 10.1111/j.1749-6632.1957.tb49665.x
Ycas M: On earlier states of the biochemical system. J Theor Biol 1974, 44: 145–160. 10.1016/S0022-5193(74)80035-4
Jensen RA: Enzyme recruitment in evolution of new function. Annu Rev Microbiol 1976, 30: 409–425. 10.1146/annurev.mi.30.100176.002205
Lazcano A, Miller SL: The origin and early evolution of life: Prebiotic chemistry, the Pre-RNA world, and time. Cell 1996, 85: 793–798. 10.1016/S0092-8674(00)81263-5
Doolittle RF: Evolutionary aspects of whole-genome biology. Curr Opin Struct Biol 2005, 15: 248–253. 10.1016/j.sbi.2005.04.001
Newman MEJ: Power laws, Pareto distributions and Zipf's law. Contemporary Physics 2005, 46: 323–351. 10.1080/00107510500052444
Behre J, Wilhelm T, von Kamp A, Ruppin E, Schuster S: Structural robustness of metabolic networks with respect to multiple knockouts. J Theor Biol 2008, 252: 433–41. 10.1016/j.jtbi.2007.09.043
Haus UU, Klamt S, Stephen T: Computing knock out strategies in metabolic networks. J Comp Biol 2008, 15: 259–68. 10.1089/cmb.2007.0229