BioTransformer: a comprehensive computational tool for small molecule metabolism prediction and metabolite identification

Springer Science and Business Media LLC - Tập 11 - Trang 1-25 - 2019
Yannick Djoumbou-Feunang1, Jarlei Fiamoncini2,3, Alberto Gil-de-la-Fuente4, Russell Greiner5,6, Claudine Manach2, David S. Wishart1,5
1Department of Biological Sciences, University of Alberta, Edmonton, Canada
2INRA, Human Nutrition Unit, Université Clermont Auvergne, Clermont-Ferrand, France
3Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
4Department of Information Technology, CEU San Pablo University, Madrid, Spain
5Department of Computing Science, University of Alberta, Edmonton, Canada
6Alberta Machine Intelligence Institute, University of Alberta, Edmonton, Canada

Tóm tắt

A number of computational tools for metabolism prediction have been developed over the last 20 years to predict the structures of small molecules undergoing biological transformation or environmental degradation. These tools were largely developed to facilitate absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies, although there is now a growing interest in using such tools to facilitate metabolomics and exposomics studies. However, their use and widespread adoption is still hampered by several factors, including their limited scope, breath of coverage, availability, and performance. To address these limitations, we have developed BioTransformer, a freely available software package for accurate, rapid, and comprehensive in silico metabolism prediction and compound identification. BioTransformer combines a machine learning approach with a knowledge-based approach to predict small molecule metabolism in human tissues (e.g. liver tissue), the human gut as well as the environment (soil and water microbiota), via its metabolism prediction tool. A comprehensive evaluation of BioTransformer showed that it was able to outperform two state-of-the-art commercially available tools (Meteor Nexus and ADMET Predictor), with precision and recall values up to 7 times better than those obtained for Meteor Nexus or ADMET Predictor on the same sets of pharmaceuticals, pesticides, phytochemicals or endobiotics under similar or identical constraints. Furthermore BioTransformer was able to reproduce 100% of the transformations and metabolites predicted by the EAWAG pathway prediction system. Using mass spectrometry data obtained from a rat experimental study with epicatechin supplementation, BioTransformer was also able to correctly identify 39 previously reported epicatechin metabolites via its metabolism identification tool, and suggest 28 potential metabolites, 17 of which matched nine monoisotopic masses for which no evidence of a previous report could be found. BioTransformer can be used as an open access command-line tool, or a software library. It is freely available at https://bitbucket.org/djoumbou/biotransformerjar/ . Moreover, it is also freely available as an open access RESTful application at www.biotransformer.ca , which allows users to manually or programmatically submit queries, and retrieve metabolism predictions or compound identification data.

Tài liệu tham khảo

Nelson DL, Cox MM (2012) Lehninger principles of biochemistry, 6th edn. W H Freeman & Co (Sd), New York Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46(D1):D608–D617 Uppal K, Walker DI, Liu K, Li S, Go Y, Jones DP (2016) Computational metabolomics: a framework for the million metabolome. Chem Res Toxicol 29(12):1956–1975 Arora B, Mukherjee J, Nath Gupta M (2014) Enzyme promiscuity: using the dark side of enzyme specificity in white biotechnology. Sustain Chem Process 2:25 Testa B, Pedretti A, Vistoli G (2012) Reactions and enzymes in the metabolism of drugs and other xenobiotics. Drug Discov Today 17(11–12):549–560 Dueñas M, Muñoz-González I, Cueva C, Jiménez-Girón A, Sánchez-Patán F, Santos-Buelga C et al (2015) A survey of modulation of gut microbiota by dietary polyphenols. Biomed Res Int. https://doi.org/10.1155/2015/850902 Koppel N, Rekdal VM, Balskus EP (2017) Chemical transformation of xenobiotics by the human gut microbiota. Science 356(6344):1246–1257 Testa B (2009) Drug metabolism for the perplexed medicinal chemist. Chem Biodivers 6(11):2055–2070 Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12 Tang J, Cao Y, Rose RL, Brimfield AA, Dai D, Goldstein JA et al (2001) Metabolism of chlorpyrifos by human cytochrome p450 isoforms and human, mouse, and rat liver microsomes. Drug Metab Dispos 29(9):1201–1204 Joly C, Gay-Quéheillard J, Léké A, Chardon K, Delanaud S, Bach V et al (2013) Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the simulator of the human intestinal microbial ecosystem (SHIME®) and in the rat. Environ Sci Pollut Res 20(5):2726–2734 Supreeth M, Chandrashekar MA, Sachin N, Raju NS (2016) Effect of chlorpyrifos on soil microbial diversity and its biotransformation by Streptomyces sp. HP-11. 3 Biotech 6(2):147 Benzidane C, Dahamna S (2013) Chlorpyrifos residues in food plant in the region of Setif-Algeria. Commun Agric Appl Biol Sci 78(2):157–160 Shamasunder B (2017) Chlorpyrifos contamination across the food system: shifting science, regulatory challenges, and implications for public health. In: Hoflund AB, Jones JC, Pautz MC (eds) The intersection of food and public health: current policy challenges and solutions. Routledge, New York, pp 107–120 Ebele AJ, Abou-Elwafa Abdallah M, Harrad S (2017) Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg Contam 3(1):1–16 Blair BD, Crago JP, Hedman CJ, Klaper RD (2013) Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 93(9):2116–2123 Coleman S, Linderman R, Hodgson E, Rose RL (2000) Comparative metabolism of chloroacetamide herbicides and selected metabolites in human and rat liver microsomes. Environ Health Perspect 108(12):1151–1157 Wishart DS (2009) Computational strategies for metabolite identification in metabolomics. Bioanalysis 1(9):1579–1596 Celiz M, Tso J, Aga D (2009) Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. Environ Toxicol Chem 28(12):173 Geissen V, Mol H, Klumpp E, Umlauf G, Nadal M, van der Ploeg M et al (2015) Emerging pollutants in the environment: a challenge for water resource management. Int Soil Water Conserv Res 3(1):57–65 Basheer C, Alnedhary AA, Rao BSM, Lee HK (2007) Determination of organophosphorous pesticides in wastewater samples using binary-solvent liquid-phase microextraction and solid-phase microextraction: a comparative study. Anal Chim Acta 605(2):147–152 Hubert J, Nuzillard J, Renault J (2017) Dereplication strategies in natural product research: How many tools and methodologies behind the same concept? Phytochem Rev 16(1):55–95 Liu R, Liu J, Tawa G, Wallqvist A (2012) 2D SMARTCyp reactivity-based site of metabolism prediction for major drug-metabolizing cytochrome P450 enzymes. J Chem Inf Model 52(6):1698–1712 Rydberg P, Gloriam DE, Olsen L (2010) The SMARTCyp cytochrome P450 metabolism prediction server. Bioinformatics 26(23):2988–2989 Terfloth L, Bienfait B, Gasteiger J (2007) Ligand-based models for the isoform specificity of cytochrome P450 3A4, 2D6, and 2C9 substrates. J Chem Inf Model 47(4):1688–1701 Marchant CA, Briggs KA, Long A (2008) In silico tools for sharing data and knowledge on toxicity and metabolism: Derek for windows, meteor, and vitic. Toxicol Mech Methods 18(2–3):177–187 Ridder L, Wagener M (2008) SyGMa: combining expert knowledge and empirical scoring in the prediction of metabolites. ChemMedChem 3(5):821–832 COMPUDRUG (2013) Metabolexpert. http://www.compudrug.com/metabolexpert. Accessed 1 Jan 2017 ADMET Predictor (2018) Simulations Plus, Inc., Lancaster, California, USA. https://www.simulations-plus.com/software/admetpredictor/metabolism. Accessed 1 Jan 2018 Zaretzki J, Matlock M, Swamidass SJ (2013) XenoSite: accurately predicting cyp-mediated sites of metabolism with neural networks. J Chem Inf Model 53(12):3373–3383 Wicker J, Lorsbach T, Gütlein M, Schmid E, Latino D, Kramer S et al (2016) enviPath—the environmental contaminant biotransformation pathway resource. Nucleic Acids Res 44:D502 Gao J, Ellis LBM, Wackett LP (2009) The University of Minnesota biocatalysis/biodegradation database: improving public access. Nucleic Acids Res 38(Suppl. 1):D488–D491 Ellis LB, Gao J, Fenner K, Wackett LP (2008) The University of Minnesota pathway prediction system: predicting metabolic logic. Nucleic Acids Res 36(Web Server issue):W427–W432 Wicker J, Fenner K, Ellis L, Wackett L, Kramer S (2010) Predicting biodegradation products and pathways: a hybrid knowledge- and machine learning-based approach. Bioinformatics 26(6):814–821 Molecular Discovery (2017) Mass-MetaSite. https://www.moldiscovery.com/software/massmetasite/. Accessed 15 Jan 2017 SCIEX—LightSight® Software (2018) https://sciex.com/products/software/lightsight-software. Accessed 20 Apr 2018 Kirchmair J, Göller AH, Lang D, Kunze J, Testa B, Wilson ID et al (2015) Predicting drug metabolism: experiment and/or computation? Nat Rev Drug Discov 14(6):387–404 Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46(D1):D1074–D1082 FooDB (2016) The Food Metabolome Database. http://foodb.ca/. Accessed 1 Jan 2017 PhytoHub (2017). http://phytohub.eu. Accessed 1 Jan 2017 Wishart DS (2017) ContaminantDB. http://contaminantdb.ca. Accessed 15 June 2017 Wishart D, Arndt D, Pon A, Sajed T, Guo AC, Djoumbou Y et al (2015) T3DB: the toxic exposome database. Nucleic Acids Res 43(D1):D928–D934 McEachran AD, Sobus JR, Williams AJ (2017) Identifying known unknowns using the US EPA’s CompTox Chemistry Dashboard. Anal Bioanal Chem 409(7):1729–1735 Sajed T, Marcu A, Ramirez M, Pon A, Guo AC, Knox C et al (2016) ECMDB 2.0: a richer resource for understanding the biochemistry of E. coli. Nucleic Acids Res 44(D1):D495–D501 Ramirez-Gaona M, Marcu A, Pon A, Guo AC, Sajed T, Wishart NA et al (2017) YMDB 2.0: a significantly expanded version of the yeast metabolome database. Nucleic Acids Res 45(D1):D440–D445 Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V et al (2016) ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res 44(D1):D1214–D1219 Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361 Keseler IM, Mackie A, Peralta-Gil M, Santos-Zavaleta A, Gama-Castro S, Bonavides-Martínez C et al (2013) EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res 41:D605 International Union of Biochemistry and Molecular Biology—IUBMB Nomenclature Committee Recommendations 2017. http://www.chem.qmul.ac.uk/iubmb/. Accessed 15 Apr 2017 González-Lergier J, Broadbelt LJ, Hatzimanikatis V (2005) Theoretical considerations and computational analysis of the complexity in polyketide synthesis pathways. J Am Chem Soc 127(27):9930 Wishart DS (2016) Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 15(7):473–484 Allen F, Pon A, Wilson M, Greiner R, Wishart D (2014) CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra. Nucleic Acids Res 42(W1):W94–W99 Allen F, Greiner R, Wishart D (2014) Competitive fragmentation modeling of ESI-MS/MS spectra for putative metabolite identification. Metabolomics 11(1):98–110 Allen F, Pon A, Greiner R, Wishart D (2016) Computational prediction of electron ionization mass spectra to assist in GC/MS compound identification. Anal Chem 88(15):7689–7697 Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S (2016) MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform 8(1):3 Da Silva RR, Dorrestein PC, Quinn RA (2015) Illuminating the dark matter in metabolomics. Proc Natl Acad Sci U S A 112(41):12549–12550 Tian S, Djoumbou Y, Greiner R, Wishart DS (2018) CypReact: a software tool for in silico reactant prediction for human cytochrome P450 enzymes. J Chem Inf Model 58:1282–1291 Delaney KA, Kleinschmidt KC (2010) Biochemical and metabolic principles. Goldfrank’s toxicologic emergencies, 9th edn. McGraw-Hill Professional, New York, p 170 Miners JO, Smith PA, Sorich MJ, McKinnon RA, Mackenzie PI (2004) Predicting human drug glucuronidation parameters: application of in vitro and in silico modeling approaches. Annu Rev Pharmacol Toxicol 44:1–25 Jančová P, Šiller M (2012) Topics on drug metabolism. In: Paxton J (ed) Phase II drug metabolism. InTech, Croatia Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF et al (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92(4):414–417 Spjuth O, Rydberg P, Willighagen EL, Evelo CT, Jeliazkova N (2016) XMetDB: an open access database for xenobiotic metabolism. J Cheminform 8(1):47 Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D et al (2009) SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res 38(Suppl. 1):D237–D243 Rothwell JA, Perez-Jimenez J, Neveu V, Medina-Remón A, M’Hiri N, García-Lobato P et al. (2013) Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Databases. https://doi.org/10.1093/database/bat070 Daylight Chemical Information Systems, Inc. (2008) SMARTS—a language for describing molecular patterns. http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html. Accessed 20 May 2009 SMIRKS (2007) A reaction transform language. http://daylight.com/dayhtml/doc/theory/theory.smirks.html. Accessed 15 Sept 2014 Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G et al (2016) ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform 8(1):1–20 Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788 Placzek S, Schomburg I, Chang A, Jeske L, Ulbrich M, Tillack J et al (2017) BRENDA in 2017: new perspectives and new tools in BRENDA. Nucleic Acids Res 45(D1):D380–D388 Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM et al (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 44(D1):D471–D480 Bateman A, Martin MJ, O’Donovan C, Magrane M, Alpi E, Antunes R et al (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45(D1):D158–D169 Kalgutkar AS, Gardner I, Obach RS, Shaffer CL, Callegari E, Henne KR et al (2005) A comprehensive listing of bioactivation pathways of organic functional groups. Curr Drug Metab 6(3):161–225 Fenner K, Gao J, Kramer S, Ellis L, Wackett L (2008) Data-driven extraction of relative reasoning rules to limit combinatorial explosion in biodegradation pathway prediction. Bioinformatics 24(18):2079–2085 Burapan S, Kim M, Han J (2017) Demethylation of polymethoxyflavones by human gut bacterium, Blautia sp. MRG-PMF1. J Agric Food Chem 65(8):1620–1629 Selma MV, Espín JC, Tomás-Barberán FA (2009) Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57(15):6485–6501 Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E (2016) The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8(2):78 Button WG, Judson PN, Long A, Vessey JD (2003) Using absolute and relative reasoning in the prediction of the potential metabolism of xenobiotics. J Chem Inf Comput Sci 43(5):1371–1377 Chen C-H (2013) Activation and detoxification enzymes: functions and implications. Springer, New York, pp 1–177 Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213 BIOVIA (2011) The keys to understanding MDL keyset technology. http://accelrys.com/products/pdf/keys-to-keyset-technology.pdf. Accessed 1 Oct 2012 ChemAxon’s Marvin Suite (2017). https://www.chemaxon.com/download/marvin-suite/. Accessed 15 Jan 2017 Frank E, Hall MA, Witten IH (eds) (2016) The WEKA workbench. Online appendix for “data mining: practical machine learning tools and techniques”, 4th edn. Morgan Kaufmann, Burlington Willighagen EL, Mayfield JW, Alvarsson J, Berg A, Carlsson L, Jeliazkova N et al (2017) The Chemistry Development Kit (CDK) v2.0: atom typing, depiction, molecular formulas, and substructure searching. J Cheminform 9(1):33 Jeliazkova N, Kochev N (2011) AMBIT-SMARTS: efficient searching of chemical structures and fragments. Mol Inform 30(8):707–720 Wang H, Wang N, Wang B, Zhao Q, Fang H, Fu C et al (2016) Antibiotics in drinking water in Shanghai and their contribution to antibiotic exposure of school children. Environ Sci Technol 50(5):2692–2699 Cyplik P, Marecik R, Piotrowska-Cyplik A, Olejnik A, Drozdzynska A, Chrzanowski L (2012) Biological denitrification of high nitrate processing wastewaters from explosives production plant. Water Air Soil Pollut 223(4):1791–1800 Ottaviani JI, Borges G, Momma TY, Spencer JPE, Keen CL, Crozier A et al (2016) The metabolome of [2-14C](–)-epicatechin in humans: implications for the assessment of efficacy, safety, and mechanisms of action of polyphenolic bioactives. Sci Rep 6:29034 Peisl BYL, Schymanski EL, Wilmes P (2018) Dark matter in host-microbiome metabolomics: tackling the unknowns—a review. Anal Chim Acta 1037:12–27 Das A, Srinivasan M, Ghosh TS, Mande SS (2016) Xenobiotic metabolism and gut microbiomes. PLoS ONE 11(10):e0163099 Ridlon JM, Harris SC, Bhowmik S, Kang D, Hylemon PB (2016) Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7(1):22–39 Ghazalpour A, Cespedes I, Bennett BJ, Allayee H (2016) Expanding role of gut microbiota in lipid metabolism. Curr Opin Lipidol 27(2):141–147 Carmody RN, Turnbaugh PJ (2014) Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J Clin Invest 124(10):4173–4181