The excitatory neurotransmitter glutamate causes filopodia formation in cultured hippocampal astrocytes

GLIA - Tập 3 Số 5 - Trang 322-334 - 1990
Ann Cornell-Bell1, Prem Thomas1, Stephen J Smith1
1Section of Molecular Neurobiology, Howard Hughes Medical Institute and Yale University School of Medicine, New Haven, Connecticut 06510

Tóm tắt

Abstract

Can neurons induce surrounding glia to provide a more favorable microenvironment? Synapses and nerve growth cones have been shown to release neurotransmitters (Hume et al. Nature 1983;305:632–634; Kater et al. Trends Neurosci. 1988;11:315–321; Young and Poo Nature 1983;305:634–637) providing a possible mechanism for this type of control. The excitatory neurotransmitter glutamate induces an increase in the number of filopodia on the surface of astrocytes cultured from the neonatal rat hippocampus. This seems to be associated with a receptor‐mediated event that is activated to a lesser degree by the quisqualate and kainate, but not NMDA receptors. In addition, time‐lapse video recordings have revealed a rapid extension of filopodia from the apical margins of cells treated with glutamate. The apical margins of glutamate‐treated cells studied with electron microscopy contained dense cortical actin networks that are devoid of microtubules. Coated pits are often seen to invaginate from the the apical membrane in the vicinity of filopodia. A receptor‐binding step may be followed by a rapid reorganization of cortical actin resulting in actin‐containing filopodia. This process may be mediated by inositol lipid hydrolysis. Pyramidal neurons settled on glial cultures induced filopodia to form around the entire margin of growth cones and neurite tips suggesting that these events might occur in situ.

Từ khóa


Tài liệu tham khảo

10.1126/science.7403847

10.1002/glia.440010111

10.1523/JNEUROSCI.06-12-03542.1986

10.1038/320172a0

10.1038/323712a0

10.1098/rspb.1988.0054

10.1038/311656a0

10.1016/0166-2236(87)90015-4

10.1016/0304-3940(89)90458-8

Buchanan J., 1989, Studies of nervemuscle interactions in Xenopus cell culture: Fine structure of early functional contacts, J. Neurosci., 9, 1540, 10.1523/JNEUROSCI.09-05-01540.1989

10.1016/0166-2236(86)90153-0

Burmeister D. W., 1988, Micropruning: The mechanism of turning of Aplysia growth cones at substrate borders in vitro, J. Neurosci., 8, 3151, 10.1523/JNEUROSCI.08-09-03151.1988

10.1016/0006-8993(84)91008-4

10.1002/jnr.490350513

10.1016/0896-6273(88)90162-6

10.1126/science.3715470

Cooper M. W., 1988, Video microscopy of first contacts in CA1 hippocampal cell cultures, Soc. Neurosci. Abstr., 14, 893

Cooper M. W., 1989, Live observations of dynamic events in the formation of rat cerebellar cortex by laser microscopy, Soc. Neurosci. Abstr., 15, 808

Cornell‐Bell A. H., 1988, Filopodia containing actin erupt from hippocampal neurons and glia following glutamate exposure, J. Cell Biol., 107, 684a

10.1126/science.1967852

Coulter H. D., 1967, Rapid and improved methods for embedding biological tissues in Epon 812 and Araldite 502, J. Ultrastruct. Res., 86, 107

10.1111/j.1749-6632.1986.tb27134.x

10.1038/307641a0

10.1073/pnas.85.11.4071

10.1016/0166-2236(89)90098-2

Edmonson J. C., 1987, Glial‐guided granule neuron migration in vitro: A high resolution time‐lapse video microscopic study, J. Neurosci., 7, 1928, 10.1523/JNEUROSCI.07-06-01928.1987

10.1083/jcb.90.3.622

10.1016/0166-2236(86)90054-8

10.1083/jcb.98.1.193

10.1002/jnr.490130110

10.1038/305632a0

Janmey P. A., 1987, Phosphatidylinositide micelles and polyphosphoinositide‐containing vesicles dissociate endogenous gelsolin‐actin complex and promote actin assembly from the fast growing end of actin filaments blocked by gelsolin, J. Biol. Chem., 262, 12228, 10.1016/S0021-9258(18)45341-0

Johnston R. N., 1980, Regulation of the elongating nerve fiber, Curr. Top. Dev. Biol., 16, 207

10.1016/0166-2236(88)90094-X

Kettenman H., 1985, Pharmacological properties of GABA, glutamate and aspartate‐induced depolarizations in cultured astrocytes, J. Neurosci., 5, 3295, 10.1523/JNEUROSCI.05-12-03295.1985

10.1016/0014-4827(88)90136-X

10.1016/0012-1606(81)90240-2

10.1016/0896-6273(89)90119-0

Lipton S. A., 1988, Spontaneous release of acetylcholine affects the physiological nicotinic response of rat retinal ganglion cells in culture, J. Neurosci., 8, 3857, 10.1523/JNEUROSCI.08-10-03857.1988

10.1016/0166-2236(89)90026-X

10.1083/jcb.99.6.2041

10.1016/0165-0173(88)90020-3

10.1523/JNEUROSCI.07-12-04034.1987

Mattson M. P., 1987, Pruning of hippocampal pyramidal neuron dendritic architecture in vitro by glutamate and a protective effect of GABA plus diazepam, Soc. Neurosci. Abst., 13, 367

10.1016/0896-6273(88)90134-1

McCobb D. P., 1986, Serotonin inhibition of growth cone motility is blocked by acetylcholine, Soc. Neurosci. Abstr., 11, 761

10.1016/S0022-5320(84)80051-9

10.1111/j.1365-2818.1975.tb04018.x

10.1038/309367a0

Pastan I., 1985, Endocytosis, 1, 10.1007/978-1-4615-6904-6

10.1016/0896-6273(88)90074-8

10.1016/0014-5793(87)80525-2

Pratt W. K., 1978, Digital Image Processing, 323

10.1523/JNEUROSCI.03-06-01289.1983

10.1002/cne.901410303

Schouboe A., 1988, Glutamine and Glutamate in Mammals, 21

10.1126/science.2449733

Tosney K. W., 1983, Neuronal motility: The ultrastructure of veils and microspikes correlates with their motile activities, J. Cell Sci., 61, 389, 10.1242/jcs.61.1.389

10.1083/jcb.75.3.915

10.1073/pnas.82.23.8256

10.1083/jcb.106.6.2095

10.1038/339380a0

10.1083/jcb.25.2.407

10.1038/305634a0