Bacterial exopolysaccharides – a perception
Tóm tắt
Microbial polysaccharides are multifunctional and can be divided into intracellular polysaccharides, structural polysaccharides and extracellular polysaccharides or exopolysaccharides (EPS). Extracellular polymeric substances (EPS), produced by both prokaryotes (eubacteria and archaebacteria) and eukaryotes (phytoplankton, fungi, and algae), have been of topical research interest. Newer approaches are carried out today to replace the traditionally used plant gums by their bacterial counterparts. The bacterial exopolysaccharides represent a wide range of chemical structures, but have not yet acquired appreciable significance. Chemically, EPS are rich in high molecular weight polysaccharides (10 to 30 kDa) and have heteropolymeric composition. They have new‐fangled applications due to the unique properties they possess. Owing to this, exopolysaccharides have found multifarious applications in the food, pharmaceutical and other industries. Hence, the present article converges on bacterial exopolysaccharides. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Từ khóa
Tài liệu tham khảo
Bayer A.S., 1990, Oxygen dependent upregulation of mucoid polysaccharide (alginate) production in Pseudomonas aeruginosa, Infect. Immun., 58, 1344, 10.1128/iai.58.5.1344-1349.1990
Bergmaier D. 2002.Exopolysaccharide production during chemostat cultures with free and immobilizedLactobacillus rhamnosusRW‐9595M. In: Ph.D. thesis submitted to Département des sciences des aliments et de la nutrition Faculté des sciences de l'agriculture et de l'alimentation Université Laval Québec Chapter 4.
Chandrasekaran M., 1997, Industrial enzymes from marine microorganisms: The Indian scenario, J. Mar. Biotechnol., 5, 86
Christensen B.E. Stokke B.T.andSmidsrod O. 1995.Xanthan‐the natural water soluble cellulose derivative In: Cellulose and Cellulose Derivates: Physicochemical Aspects and Industrial Applications (Kennedy J.F. Phillips G.O. Williams P.A. eds.) pp. 265–278. Chester England: Wood‐Head Publishing.
Christensen B.E. Smidsrod O.andStokke B.T. 1993a.Xanthans with partially hydrolysed side chains: concormation and transitions. In: Carbohydrates and Carbohydrate Polymers. Yalpani M. (Ed.) ATL Press Mount Pleasant pp. 166–173.
De Phillippis R., 1998, Exocellular polysaccharides from cyanobacteria and their possible application, FEMS Microbiol. Rev., 22, 151, 10.1016/S0168-6445(98)00012-6
Dudman W. F.1977.The role of surface polysaccharides in natural environments. In: Surface Carbohydrates of the Prokaryotic Cell. Sutherland I.W. (Ed.) Academic Press New York pp. 357–414.
Friedman B.A., 1967, Concentration and accumulation of metallic ions by the bacterium Zoogloea, Dev. Ind. Microbiol., 9, 381
Geddie G.L., 1994, The effect of acetylation on cation binding by algal and bacterial alginates, Biotechnol. Appl. Biochem., 20, 117
Harada T. Terasaki andHarada A.1992.Curdlan. In: Industrial Gums: Polysaccharide and Their Derivatives 3rdedn. (Whistler R.L. and BeMiller J.N. eds.) pp. 427–445. Academic Press London.
Iyer A., 2001, Production of exopolysaccharide by a moderately halophilic bacterium, Trends Carbohydr. Chem., 7, 77
Iyer A., 2005, Rheological properties of an exopolysaccharide produced by a marine Enterobacter cloaceae, Natl. Acad. Sci. Lett., 28, 119
Iyer A., 2005, Characterization of an exopolysaccharide produced by a marine Enterobacter cloaceae, Indian J. Exp. Biol., 43, 467
Jeanes A.1977.Dextrans and pullulans: Industrially significant α‐D‐glucans. In: Extracellular Microbial Polysaccharides (Paul A. Sanford and Allen Laskin eds.) pp. 284–298. ACS Symposium Series 45 American Chemical Society Washington D.C.
Kang K.S.andPettitt D. J.1992.Xanthan Gellan Welan and Rhamsan. In: Industrial Gums: Polysaccharide and Their Derivatives 3rdedn. Whistler R.L. and BeMiller J.N. (Eds.) Academic Press London pp. 341–398.
Kong J., 1998, Utilization of a cell‐bound polysaccharide produced by the marine bacterium Zooglea sp.: New biomaterial for metal adsorption and enzyme immobilization, J. Mar. Biotechnol., 6, 99
Kuhn S.P., 1989, Adsorption of mixed metals and cadmium by calcium alginate immobilized Zooglea ramigera, Appl. Microbiol., 31, 613
Linton J.D. Ash S.G.andHuyhrechts L.1991.Microbial polysaccharides. In: Biomaterials. Byrom D. (Ed.) Stockton Press New York pp. 215–261.
Margaritis A.andPace G. W.1985.Microbial polysaccharides. In: Comprehensive Biotechnology: The Principles Applications and Regulations of Biotechnology in Industry Agriculture and Medicine (Editor‐in‐chief: Murray Moo‐Young); The Practice of Biotechnology: Current Commodity Products Volume 3. Harvey W. Blanch Stephen Drew and Daniel I.C. Wang (Eds.) Pergamon Press New York pp. 1005–1045.
Morin A.1998.Screening of polysaccharide‐producing microorganisms factors influencing the production and recovery of microbial polysaccharides. In: Polysaccharides – Structural Diversity and Functional Versatility. Dumitriu S. (Ed.) Marcel Dekker Inc. Publication New York pp. 275–296.
Mozzi F., 1995, Exopolysaccharide production by Lactobacillus casei, I. Influence of salts. Milchwissenschaft, 50, 186
Parker D.L., 1996, Effect of metal cations on the viscosity of a pectin like capsular polysaccharide from the cyanobacterium Microcystis flos‐aquae C3‐40, Appl. Environ. Microbiol., 62, 1208, 10.1128/aem.62.4.1208-1213.1996
Raguenes G., 1996, Description of a new polymer‐secreting bacterium from a deep‐sea hydrothermal vent, Alteromonas macleodii subsp. fijiensis, and preliminary characterization of the polymer, Appl. Environ. Microbiol., 62, 67, 10.1128/aem.62.1.67-73.1996
Skaliy P., 1972, Effect of physiological age and state on survival of desiccated Pseudomonas aeruginosa, Appl. Microbiol., 24, 763, 10.1128/am.24.5.763-767.1972
Sutherland I. W.1972.Bacterial exopolysaccharides. In: Advances in Microbial Physiology. Rose A.H. and Tempest D. W. (Eds.) Academic Press London – New York pp. 143–213.
Sutherland I. W.1977.Microbial exopolysaccharide synthesis. In: Extracellular Microbial Polysaccharides ACS Symposium Series 45. Sanford P. A. and Laskin A. (Eds.) American Chemical Society Washington D.C pp. 40–57.
Sutherland I. W.1982.Biosynthesis of microbial exopolysaccharides. In:Advances in Microbial Physiology. Dans A.H.R. and Morris J.G. (Eds.) Academic Press New York USA pp. 80–150.
Sutherland I. W.1990.Biotechnology of microbial exopolysaccharides. In: Cambridge Studies in Biotechnology 9. Cambridge University Press Cambridge pp. 1–163.
Sutherland I. W.2002.Polysaccharides from microorganisms plants and animals. In: Biopolymers Volume 5 Polysaccharides I: Polysaccharides from Prokaryotes. Vandamme E. De Baets S. and Steinbuchel A. (Eds.) Wiley‐VCH Publisher Weinheim pp. 1–19.
Tsujisaka Y.andMitsuhashi M.1993.Pullulan. In: Industrial Gums: Polysaccharide and their derivatives 3rd edn. Whistler R.L. and BeMiler J.N. (Eds.) Academic Press London pp. 447–461.
Van Beek S.1997.Caracterisation des activites metaboliques des ferments utilises en industrie des viandes Evaluation de la production de polysaccahreides exocellulaires par des souches de pediocoques et de lactobacilles. In: Memoire de fin d'etudes. pp. 70. Institut Superieur Agricole de Beauvias France Centre de recherche et de developpment sur les aliments St. Hyacinthe Quebec Canada.
Vanhooren P., 1998, Biosynthesis, physiological role, use and fermentation process characteristics of bacterial exopolysaccharides, Recent Res. Devel. Fermen. Bioeng., 1, 253
Vanhooren P.T.andVandamme E. J.2000.Microbial production of clavan an L‐fucose rich exopolysaccharide. In: Food Biotechnology (Bielecki S. Tramper J. and Polak J. eds.) pp. 109–114. Elsevier Science B.V. Amsterdam The Netherlands.
Vermani M.V., 1997, Novel exopolysaccharide production by Azotobacter vinelandii MTCC 2459, a plant rhizosphere isolate, Lett. Appl. Bacteriol., 24, 379
Wells J.1977.Extracellular microbial polysaccharides – a critical overview. In: ACS Symposium Series 45. Sanford P.A. and Laskin a. (Eds.) American Chemical Society Washington D.C. pp. 299–325.