Microarray analysis of defined Mycobacterium tuberculosis populations using RNA amplification strategies
Tóm tắt
The amplification of bacterial RNA is required if complex host-pathogen interactions are to be studied where the recovery of bacterial RNA is limited. Here, using a whole genome Mycobacterium tuberculosis microarray to measure cross-genome representation of amplified mRNA populations, we have investigated two approaches to RNA amplification using different priming strategies. The first using oligo-dT primers after polyadenylation of the bacterial RNA, the second using a set of mycobacterial amplification-directed primers both linked to T7 polymerase in vitro run off transcription. The reproducibility, sensitivity, and the representational bias introduced by these amplification systems were examined by contrasting expression profiles of the amplified products from inputs of 500, 50 and 5 ng total M. tuberculosis RNA with unamplified RNA from the same source. In addition, as a direct measure of the effectiveness of bacterial amplification for identifying biologically relevant changes in gene expression, a model M. tuberculosis system of microaerophilic growth and non-replicating persistence was used to assess the capability of amplified RNA microarray comparisons. Mycobacterial RNA was reproducibly amplified using both methods from as little as 5 ng total RNA (~equivalent to 2 × 105 bacilli). Differential gene expression patterns observed with unamplified RNA in the switch from aerobic to microaerophilic growth were also reflected in the amplified expression profiles using both methods. Here we describe two reproducible methods of bacterial RNA amplification that will allow previously intractable host-pathogen interactions during bacterial infection to be explored at the whole genome level by RNA profiling.
Tài liệu tham khảo
Van Gelder RN, von Zastrow ME, Yool A, Dement WC, Barchas JD, Eberwine JH: Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A. 1990, 87: 1663-1667.
Sarkar N: Polyadenylation of mRNA in prokaryotes. Annu Rev Biochem. 1997, 66: 173-197.
Lakey DL, Zhang Y, Talaat AM, Samten B, DesJardin LE, Eisenach KD, Johnston SA, Barnes PF: Priming reverse transcription with oligo(dT) does not yield representative samples of Mycobacterium tuberculosis cDNA. Microbiology. 2002, 148: 2567-2572.
Motley ST, Morrow BJ, Liu X, Dodge IL, Vitiello A, Ward CK, Shaw KJ: Simultaneous analysis of host and pathogen interactions during an in vivo infection reveals local induction of host acute phase response proteins, a novel bacterial stress response, and evidence of a host-imposed metal ion limited environment. Cell Microbiol. 2004, 6: 849-865.
LeMessurier KS, Ogunniyi AD, Paton JC: Differential expression of key pneumococcal virulence genes in vivo. Microbiology. 2006, 152: 305-311.
Rohde KH, Abramovitch RB, Russell DG: Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. Cell Host Microbe. 2007, 2: 352-364.
Tailleux L, Waddell SJ, Pelizzola M, Mortellaro A, Withers M, Tanne A, Castagnoli PR, Gicquel B, Stoker NG, Butcher PD, Foti M, Neyrolles O: Probing Host Pathogen Cross-Talk by Transcriptional Profiling of Both Mycobacterium tuberculosis and Infected Human Dendritic Cells and Macrophages. PLoS ONE. 2008, 3: e1403-
Moreno-Paz M, Parro V: Amplification of low quantity bacterial RNA for microarray studies: time-course analysis of Leptospirillum ferrooxidans under nitrogen-fixing conditions. Environ Microbiol. 2006, 8: 1064-1073.
Gao H, Yang ZK, Gentry TJ, Wu L, Schadt CW, Zhou J: Microarray-based analysis of microbial community RNAs by whole-community RNA amplification. Appl Environ Microbiol. 2007, 73: 563-571.
Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Barrell BG, al. : Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998, 393: 537-44.
Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, Dodson R, Gwinn M, Haft D, Hickey E, Kolonay JF, Nelson WC, Umayam LA, Ermolaeva M, Salzberg SL, Delcher A, Utterback T, Weidman J, Khouri H, Gill J, Mikula A, Bishai W, Jacobs JWR, Venter JC, Fraser CM: Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol. 2002, 184: 5479-5490.
Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, Duthoy S, Grondin S, Lacroix C, Monsempe C, Simon S, Harris B, Atkin R, Doggett J, Mayes R, Keating L, Wheeler PR, Parkhill J, Barrell BG, Cole ST, Gordon SV, Hewinson RG: The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci U S A. 2003, 100: 7877-7882.
Talaat AM, Hunter P, Johnston SA: Genome-directed primers for selective labeling of bacterial transcripts for DNA microarray analysis. Nat Biotechnol. 2000, 18: 679-82.
Rachman H, Lee JS, Angermann J, Kowall J, Kaufmann SH: Reliable amplification method for bacterial RNA. J Biotechnol. 2006, 126: 61-68.
Lawson JN, Johnston SA: Amplification of sense-stranded prokaryotic RNA. DNA Cell Biol. 2006, 25: 627-634.
Lawson JN, Lyons CR, Johnston SA: Expression profiling of Yersinia pestis during mouse pulmonary infection. DNA Cell Biol. 2006, 25: 608-616.
Wayne LG, Hayes LG: An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun. 1996, 64: 2062-9.
Voskuil MI, Visconti KC, Schoolnik GK: Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis (Edinb ). 2004, 84: 218-227.
Park HD, Guinn KM, Harrell MI, Liao R, Voskuil MI, Tompa M, Schoolnik GK, Sherman DR: Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol. 2003, 48: 833-843.
Mangan JA, Monahan IM, Butcher PD: Gene expression during host-pathogen interactions: approaches to bacterial mRNA extraction and labeling for microarray analysis. In Functional Microbial Genomics. Edited by: Wren BW and Dorrell N. 2002, London, Academic Press, 137-151.
Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK: Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. J Exp Med. 2003, 198: 693-704.
Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JC: Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol. 2003, 47: 103-118.
Website: Bacterial Microarray Group at St. George's. [http://bugs.sgul.ac.uk]
Stewart GR, Wernisch L, Stabler R, Mangan JA, Hinds J, Laing KG, Young DB, Butcher PD: Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology. 2002, 148: 3129-38.
Waddell SJ, Stabler RA, Laing K, Kremer L, Reynolds RC, Besra GS: The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis (Edinb ). 2004, 84: 263-274.
Website: BµG@Sbase (accession number: E-BUGS-42). [http://bugs.sgul.ac.uk/E-BUGS-42]