Modeling avian full annual cycle distribution and population trends with citizen science data

Ecological Applications - Tập 30 Số 3 - 2020
Daniel Fink1, Tom Auer1, Alison Johnston1, Viviana Ruiz‐Gutiérrez1, Wesley M. Hochachka1, Steve Kelling1
1Cornell Lab of Ornithology, Cornell University, Ithaca, New York, 14853 USA

Tóm tắt

AbstractInformation on species’ distributions, abundances, and how they change over time is central to the study of the ecology and conservation of animal populations. This information is challenging to obtain at landscape scales across range‐wide extents for two main reasons. First, landscape‐scale processes that affect populations vary throughout the year and across species’ ranges, requiring high‐resolution, year‐round data across broad, sometimes hemispheric, spatial extents. Second, while citizen science projects can collect data at these resolutions and extents, using these data requires appropriate analysis to address known sources of bias. Here, we present an analytical framework to address these challenges and generate year‐round, range‐wide distributional information using citizen science data. To illustrate this approach, we apply the framework to Wood Thrush (Hylocichla mustelina), a long‐distance Neotropical migrant and species of conservation concern, using data from the citizen science project eBird. We estimate occurrence and abundance across a range of spatial scales throughout the annual cycle. Additionally, we generate intra‐annual estimates of the range, intra‐annual estimates of the associations between species and characteristics of the landscape, and interannual trends in abundance for breeding and non‐breeding seasons. The range‐wide population trajectories for Wood Thrush show a close correspondence between breeding and non‐breeding seasons with steep declines between 2010 and 2013 followed by shallower rates of decline from 2013 to 2016. The breeding season range‐wide population trajectory based on the independently collected and analyzed North American Breeding Bird Survey data also shows this pattern. The information provided here fills important knowledge gaps for Wood Thrush, especially during the less studied migration and non‐breeding periods. More generally, the modeling framework presented here can be used to accurately capture landscape scale intra‐ and interannual distributional dynamics for broadly distributed, highly mobile species.

Từ khóa


Tài liệu tham khảo

10.1038/sdata.2018.40

10.1002/eap.1918

10.1016/j.biocon.2013.07.037

10.1371/journal.pone.0081867

10.1023/A:1010933404324

10.1080/01621459.1996.10476660

10.1016/j.biocon.2013.12.020

10.1111/ele.12048

10.1016/j.biocon.2016.09.004

Cleveland W. S., 1992, Local regression models, Statistical Models in S, 2, 309

10.1177/001316446002000104

10.1111/cobi.12956

10.1146/annurev-ecolsys-102209-144636

10.1093/auk/124.1.96

10.1080/01621459.2013.823775

European Bird Census Council.2016.Trends of common birds in Europe 2016 update.http://www.ebcc.info/index.php?ID=612

Evans M., 2011, The birds of North America

10.1017/S0376892997000088

10.1890/09-1340.1

Fink D. T.Damoulas andJ.Dave.2013.Adaptive Spatio‐Temporal Exploratory Models: Hemisphere‐wide species distributions from massively crowdsourced eBird data.InTwenty‐Seventh AAAI Conference on Artificial Intelligence (AAAI‐13) July 14–18 2013.AAAI Press Bellevue Washington USA.

10.1609/aimag.v35i2.2533

Fink D. T.Auer F.Obregon W. M.Hochachka M.Iliff B.Sullivan C.Wood I.Davies andS.Kelling.2017.The eBird Reference Dataset Version 2016 (ERD2016).http://ebird.org/ebird/data/download/erd

10.1111/j.2041-210X.2010.00060.x

10.1214/14-AOS1220

10.18637/jss.v023.i11

10.1016/j.rse.2009.08.016

10.1080/014311600210209

10.1007/978-0-387-84858-7

10.1890/130017

10.1016/j.tree.2011.11.006

10.1016/j.biocon.2018.02.027

10.1146/annurev-ecolsys-112414-054400

10.1038/s41559-019-0826-1

10.1890/14-1826.1

10.1111/2041-210X.12838

Johnston A., 2019, Best practices for making reliable inferences from citizen science data: case study using eBird to estimate species distributions, bioRxiv, 574392

10.1371/journal.pone.0139600

10.1093/biosci/biz010

Kéry M., 2015, Applied hierarchical modeling in ecology: Analysis of distribution, abundance and species richness in R and BUGS: Volume 1: Prelude and Static Models

10.1111/j.1365-2699.2010.02345.x

10.1093/oxfordjournals.pan.a004868

10.1111/brv.12359

10.1073/pnas.1718985115

10.1111/gcb.13794

10.2307/2529310

10.2307/1941447

10.1111/j.1466-8238.2007.00358.x

10.1098/rsbl.2015.0552

McGarigal K. S. A.Cushman andE.Ene.2012.FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps.http://www.umass.edu/landeco/research/fragstats/fragstats.html

10.11613/BM.2012.031

10.1002/ecs2.2707

Mentch L., 2016, Quantifying uncertainty in random forests via confidence intervals and hypothesis tests, Journal of Machine Learning Research, 17, 841

10.1016/j.biocon.2015.06.009

R Development Core Team, 2017, R: A language and environment for statistical computing

Ridgeway G.with contributions from others.2017.gbm: Generalized boosted regression models. R package version 2.1.3.https://CRAN.R-project.org/package=gbm

10.1111/ecog.02881

10.1111/ddi.12698

10.1126/science.aac9180

10.1002/ecy.1967

10.1038/s41598-019-48851-5

10.1145/356924.356930

10.1111/ecog.01034

10.1525/auk.2010.09220

J. Sauer D. Niven J. Hines D. Ziolkowski K. L. Pardieck J. E. Fallon W. Link 2017

10.1093/ptj/85.3.257

10.1016/j.biocon.2009.05.006

10.1016/j.biocon.2013.11.003

10.1890/14-1410

10.1111/j.1469-185X.2011.00216.x

10.1073/pnas.1708574114

VanDerWal J. L.Falconi S.Januchowski L.Shoo andC.Storlie.2014.SDMTools: Species Distribution Modelling Tools: Tools for processing data associated with species distribution modelling exercises. R package version 1‐1.http://www.rforge.net/SDMTools/

10.1371/journal.pone.0095565

10.1080/01621459.2017.1319839

10.1201/9781315370279

10.1145/2934664

10.1111/ddi.12428