Metal cluster ion photofragmentation

Journal of Chemical Physics - Tập 84 Số 6 - Trang 3078-3088 - 1986
P.J. Brucat1, Lan Zheng1, C. L. Pettiette1, Shihe Yang1, R. E. Smalley1
1Rice Quantum Institute and the Department of Chemistry, Rice University, Houston, Texas 77251

Tóm tắt

Photofragmentation studies are described for mass-selected transition metal cluster ions cooled in a supersonic expansion. Examples of the spectral utility of this technique are presented in the cases of Ni+2 and Nb+2 for which well resolved vibronic bands have been recorded by monitoring fragment yield as a function of dissociation laser wavelength. For larger, more complicated metal clusters the absorption spectrum is far too congested and perturbed for analysis, but photodissociation can reveal the thresholds and time scales of various fragmentation pathways. The order of the absorption event leading to dissociation is found from the extent of fragmentation as a function of laser fluence. Using this method, the one-photon dissociation threshold of Fe+2 is found to lie between 2.43 and 2.92 eV, which determines the binding energy of this transition metal dimer cation. Combined with previous ionization potential measurements this places the binding energy of the Fe2 neutral between 0.83 and 1.32 eV. Similarly, the threshold for dissociation of Fe+3 into Fe+2 +Fe was found to lie between 1.17 and 2.18 eV, placing the Fe3 neutral binding energy between 1.27 and 2.38 eV. For all transition metal clusters measured (Fex, Nix, and Nbx with x between 2 and 10) the primary one-photon fragmentation pathway was always found to be loss of a single metal atom from the cluster. Far more accurate measures of these dissociation thresholds should be possible with more extensive measurements of cold cluster ion photodissociation as a function of wavelength. Arguments are presented to the effect that these dissociation thresholds should generally provide valid measures of the true binding energies of transition metal clusters.

Từ khóa


Tài liệu tham khảo

1981, J. Chem. Phys., 74, 6511, 10.1063/1.440991

1981, J. Chem. Phys., 74, 6978, 10.1063/1.441064

1980, J. Chem. Phys., 73, 4816, 10.1063/1.440000

1982, J. Phys. Chem., 86, 2556, 10.1021/j100211a002

1983, J. Chem. Phys., 78, 1627, 10.1063/1.444961

1980, J. Chem. Phys., 73, 42, 10.1063/1.439893

1982, J. Chem. Phys., 76, 2165, 10.1063/1.443314

1984, J. Chem. Phys., 80, 568, 10.1063/1.446434

1985, Phys. Rev. B, 31, 2539, 10.1103/PhysRevB.31.2539

1978, Phys. Rev. Lett., 40, 1324, 10.1103/PhysRevLett.40.1324

1985, ACS Symp. Ser., 288, 111, 10.1021/bk-1985-0288.ch010

1985, Phys. Rev. B, 32, 7290, 10.1103/PhysRevB.32.7290

1985, J. Chem. Phys., 82, 590, 10.1063/1.448732

1985, J. Chem. Phys., 83, 2293, 10.1063/1.449321

1985, Phys. Rev. Lett., 54, 1494, 10.1103/PhysRevLett.54.1494

1985, J. Phys. Chem., 89, 566, 10.1021/j100250a004

1985, J. Am. Chem. Soc., 107, 518, 10.1021/ja00288a049

1985, J. Chem. Phys., 82, 3659, 10.1063/1.448901

1984, J. Chem. Phys., 81, 214, 10.1063/1.447365

1984, J. Chem. Phys., 81, 222, 10.1063/1.447366

1985, J. Chem. Phys., 82, 2884, 10.1063/1.448236

1979, J. Chem. Phys., 71, 4034, 10.1063/1.438171

1978, J. Chem. Phys., 69, 2779, 10.1063/1.436875

1980, J. Chem. Phys., 72, 3517, 10.1063/1.439603

1984, Chem. Phys. Lett., 112, 285, 10.1016/0009-2614(84)85742-5

1985, J. Chem. Phys., 82, 5288, 10.1063/1.448605

1985, Phys. Rev. Lett., 54, 2246, 10.1103/PhysRevLett.54.2246

1983, Rev. Sci. Instrum., 54, 837, 10.1063/1.1137487

1983, J. Chem. Phys., 79, 5316, 10.1063/1.445694

1984, J. Chem. Phys., 80, 5400, 10.1063/1.446646

1985, J. Chem. Phys., 83, 5520, 10.1063/1.449673

1985, J. Chem. Phys., 83, 4273, 10.1063/1.449090

1983, J. Chem. Phys., 78, 1627, 10.1063/1.444961

1971, Rev. Sci. Instrum., 42, 485, 10.1063/1.1685137

1977, Rev. Sci. Instrum., 48, 1306, 10.1063/1.1134871

1977, Rev. Sci. Instrum., 48, 1079, 10.1063/1.1135188

1981, Mol. Phys., 44, 267, 10.1080/00268978100102431

1955, Rev. Sci. Instrum., 26, 115

1983, Chem. Phys. Lett., 99, 161, 10.1016/0009-2614(83)80551-X

1984, J. Chem. Phys., 81, 3846, 10.1063/1.448168

1969, J. Phys. Chem., 73, 2450, 10.1021/j100727a068

1982, J. Chem. Phys., 77, 2490, 10.1063/1.444120

1975, Chem. Phys. Lett., 35, 78, 10.1016/0009-2614(75)85592-8

1979, Acc. Chem. Res., 12, 229, 10.1021/ar50139a002

1980, J. Chem. Phys., 73, 4917, 10.1063/1.440021

1976, J. Chem. Phys., 64, 4046, 10.1063/1.432013

1979, J. Chem. Phys., 70, 830, 10.1063/1.437516

1977, J. Phys. Chem., 81, 994, 10.1021/j100525a014

1984, J. Chem. Phys., 80, 1817, 10.1063/1.446940