Low-density silicon thin films for lithium-ion battery anodes

Thin Solid Films - Tập 600 - Trang 126-130 - 2016
M.T. Demirkan1,2, L. Trahey3, T. Karabacak1
1Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
2Department of Materials Science and Engineering, Gebze Technical University, Kocaeli, Turkey
3Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA

Tài liệu tham khảo

Boukamp, 1981, All-solid lithium electrodes with mixed-conductor matrix, J. Electrochem. Soc., 128/4, 4 Kim, 2014, Recent advances in the Si-based nanocomposite materials as high capacity anode materials for lithium ion batteries, Mater. Today, 17/6, 285, 10.1016/j.mattod.2014.05.003 Zhu, 2015, Nanostructured Si-based anodes for lithium-ion batteries, J. Nanosci. Nanotechnol., 15/1, 15, 10.1166/jnn.2015.9712 Cheng, 2011, Functional materials for rechargeable batteries, Adv. Mater., 23/15, 1695, 10.1002/adma.201003587 Yi, 2013, Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries, Adv. Energy Mater., 3/3, 295, 10.1002/aenm.201200857 Shu, 2006, Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries, Electrochem. Commun., 8/1, 51, 10.1016/j.elecom.2005.08.024 Fan, 2013, High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes, Nanoscale, 5/4, 1503, 10.1039/c3nr33683b Cui, 2008, Crystalline-amorphous core–shell silicon nanowires for high capacity and high current battery electrodes, Nano Lett., 9/1, 491 Yu, 2012, Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation, Adv. Energy Mater., 10.1002/aenm.201100634 Chan, 2008, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 3/1, 31, 10.1038/nnano.2007.411 Teki, 2009, Nanostructured silicon anodes for lithium ion rechargeable batteries, Small, 5/20, 2236, 10.1002/smll.200900382 Qin, 2015, A novel Si film with Si nanocrystals embedded in amorphous matrix on Cu foil as anode for lithium ion batteries, Mater. Lett., 138, 104, 10.1016/j.matlet.2014.09.101 Bourderau, 1999, Amorphous silicon as a possible anode material for Li-ion batteries, J. Power Sources, 81, 233, 10.1016/S0378-7753(99)00194-9 Ohara, 2004, A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life, J. Power Sources, 136/2, 303, 10.1016/j.jpowsour.2004.03.014 Yoon, 2014, Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking, Phys. Chem. Chem. Phys., 16/46, 25628, 10.1039/C4CP03499F Wu, 2012, Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat. Nanotechnol., 7/5, 309 Kasavajjula, 2007, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources, 163/2, 1003, 10.1016/j.jpowsour.2006.09.084 Holzapfel, 2006, Nano silicon for lithium-ion batteries, Electrochim. Acta, 52/3, 973, 10.1016/j.electacta.2006.06.034 Lee, 2008, Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries, J. Power Sources, 176/1, 353, 10.1016/j.jpowsour.2007.09.119 Lee, 2004, Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries, Electrochem. Commun., 6/5, 465, 10.1016/j.elecom.2004.03.005 Ohara, 2003, Li insertion/extraction reaction at a Si film evaporated on a Ni foil, J. Power Sources, 119, 591, 10.1016/S0378-7753(03)00301-X Uehara, 2005, Thick vacuum deposited silicon films suitable for the anode of Li-ion battery, J. Power Sources, 146/1–2, 441, 10.1016/j.jpowsour.2005.03.097 Takamura, 2006, High capacity and long cycle life silicon anode for Li-ion battery, J. Power Sources, 158/2, 1401, 10.1016/j.jpowsour.2005.10.081 Yin, 2006, Micrometer-scale amorphous Si thin-film electrodes fabricated by electron-beam deposition for Li-ion batteries, J. Electrochem. Soc., 153/3, A472, 10.1149/1.2160429 Demirkan, 2012, Density modulated multilayer silicon thin films as Li-ion battery anodes, MRS Online Proc. Libr., 1440, 6, 10.1557/opl.2012.1286 Demirkan, 2015, Cycling performance of density modulated Multilayer Silicon thin film anodes in Li-Ion batteries, J. Power Sources, 273, 52, 10.1016/j.jpowsour.2014.09.027 Wang, 2012, Investigation of crack patterns and cyclic performance of Ti–Si nanocomposite thin film anodes for lithium ion batteries, J. Power Sources, 202/0, 236 Li, 2011, Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries, J. Alloys Compd., 509/6, 2919, 10.1016/j.jallcom.2010.11.156 Sauerbrey, 1959, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung, Z. Phys. A: Hadrons Nucl., 155/2, 206, 10.1007/BF01337937 Karabacak, 2004, Stress reduction in tungsten films using nanostructured compliant layers, J. Appl. Phys., 96/10, 5740, 10.1063/1.1803106 Karabacak, 2005, Stress reduction in sputter deposited films using nanostructured compliant layers by high working-gas pressures, J. Vac. Sci. Technol. A, 23/4, 986, 10.1116/1.1861940 Alagoz, 2009, Residual stress reduction in sputter deposited thin films by density modulation, MRS Proc., 1224-FF05-22, 6 Thornton, 1974, Influence of apparatus geometry and deposition conditions on structure and topography of thick sputtered coatings, J. Vac. Sci. Technol., 11/4, 666, 10.1116/1.1312732 Messier, 1984, Revised structure zone model for thin-film physical structure, J. Vac. Sci. Technol., A, 2/2, 500, 10.1116/1.572604 Alagoz, 2009, Residual stress reduction in sputter deposited thin films by density modulation Smith, 1995 Roth, 2001 McDowell, 2013, 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries, Adv. Mater., 25/36, 4966, 10.1002/adma.201301795 Li, 2014, Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes, ACS Appl. Mater. Interfaces, 6/13, 10083, 10.1021/am5009419 Jing, 2014, Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries, Nanoscale, 6/23, 14441, 10.1039/C4NR05469E Krishnan, 2011, Functionally strain-graded nanoscoops for high power Li-ion battery anodes, Nano Lett., 11/2, 377, 10.1021/nl102981d