Electrochemical analysis of ascorbic acid, dopamine, and uric acid on nobel metal modified nitrogen-doped carbon nanotubes

Earthquake Spectra - Tập 231 - Trang 218-229 - 2016
Nikos G. Tsierkezos1, Shereen Haj Othman1, Uwe Ritter1, Lars Hafermann2, Andrea Knauer2, J. Michael Köhler2, Clive Downing3, Eoin K. McCarthy3
1Department of Chemistry, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, Weimarer Straße 25, 98693 Ilmenau, Germany
2Department of Physical Chemistry and Micro Reaction Technology, Institute of Chemistry and Biotechnology, Ilmenau University of Technology, Gustav-Kirchhof Straße 1, 98693 Ilmenau, Germany
3Advanced Microscopy Laboratory, CRANN, Trinity College Dublin, Dublin 2, Ireland

Tài liệu tham khảo

Jiang, 2010, A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode, Biosens. Bioelectron., 25, 1402, 10.1016/j.bios.2009.10.038 Zhang, 2010, A highly sensitive nonenzymatic glucose sensor based on NiO-modified multi-walled carbon nanotubes, Microchim. Acta, 168, 259, 10.1007/s00604-010-0288-2 Sherigara, 2003, Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes, Electroanalysis, 15, 753, 10.1002/elan.200390094 Matzui, 2005, Transport properties of composites with carbon nanotube-based composites, Fuller. Nanotub. Carbon Nanostruct., 13, 259, 10.1081/FST-200039294 Ovsienko, 2007, Resistance of nanocarbon material containing nanotubes, Mol. Cryst. Liq. Cryst., 468, 289, 10.1080/15421400701231582 Che, 1998, Carbon nanotubule membranes for electrochemical energy storage and production, Nature, 393, 346, 10.1038/30694 Wang, 2001, Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization, Anal. Chem., 73, 5576, 10.1021/ac0107148 Joo, 2001, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature, 412, 169, 10.1038/35084046 Li, 2012, Ultrasensitive Pb(II) potentiometric sensor based on copolyaniline nanoparticles in a plasticizer-free membrane with a long lifetime, Anal. Chem., 84, 134, 10.1021/ac2028886 Huang, 2014, Synthesis of semiconducting polymer microparticles as solid ionophore with abundant complexing sites for long-life Pb(II) sensors, ACS Appl. Mater. Interfaces, 6, 22096, 10.1021/am505463f Huang, 2013, Lead-ion potentiometric sensor based on electrically conducting microparticles of sulfonic phenylenediamine copolymer, Analyst, 138, 3820, 10.1039/c3an00346a Huang, 2014, Combinatorial screening of potentiometric Pb(II) sensors from polysulfoaminoanthraquinone solid ionophore, ACS Comb. Sci., 16, 128, 10.1021/co400140g Huang, 2011, Lead ion-selective electrodes based on polyphenylenediamine as unique solid ionophores, Talanta, 85, 1575, 10.1016/j.talanta.2011.06.049 Macanás, 2006, Preparation and characterization of polymer-stabilized metal nanoparticles for sensor applications, Phys. Status Solidi A, 203, 1194, 10.1002/pssa.200566167 Li, 2007, Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode, Sens. Actuators B: Chem., 124, 486, 10.1016/j.snb.2007.01.021 Katz, 2004, Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles, Electroanalysis, 16, 19, 10.1002/elan.200302930 Hernandez-Santos, 2002, Metal-nanoparticles based electroanalysis, Electroanalysis, 14, 1225, 10.1002/1521-4109(200210)14:18<1225::AID-ELAN1225>3.0.CO;2-Z Raj, 2003, Gold nanoparticle arrays for the voltammetric sensing of dopamine, J. Electroanal. Chem., 543, 127, 10.1016/S0022-0728(02)01481-X Dursun, 2010, Simultaneous determination of ascorbic acid, dopamine and uric acid at Pt nanoparticles decorated multiwall carbon nanotubes modified GCE, Electroanalysis, 22, 1106, 10.1002/elan.200900525 Benes, 2001, Carlsson and the discovery of dopamine, Trends Pharmacol. Sci., 22, 46, 10.1016/S0165-6147(00)01607-2 Andre, 2010, Analytical strategies to evaluate antioxidants in food: a review, Trends Food Sci. Technol., 21, 229, 10.1016/j.tifs.2009.12.003 Faulkner, 1984, Chemical microstructures on electrodes, Chem. Eng. News, 62, 28, 10.1021/cen-v062n009.p028 Dutt, 1974, Determination of uric acid at the microgram level by a kinetic procedure based on a pseudo-induction period, Anal. Chem., 46, 1777, 10.1021/ac60348a041 Wightman, 1988, Real-time characterization of dopamine overflow and uptake in the rat striatum, Neuroscience, 25, 513, 10.1016/0306-4522(88)90255-2 Prasad, 2008, Molecularly imprinted polymer-based solid-phase microextraction fiber coupled with molecularly imprinted polymer-based sensor for ultratrace analysis of ascorbic acid, J. Chromatogr. A, 1198–1199, 59, 10.1016/j.chroma.2008.05.059 Liu, 2007, H. Ju Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives, Anal. Chem., 79, 8055, 10.1021/ac070927i Fraisse, 2002, A colorimetric 96-well microtiter plate assay for the determination of urate oxidase activity and its kinetic parameters, Anal. Biochem., 309, 173, 10.1016/S0003-2697(02)00293-2 Wang, 2003, Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent, Anal. Chim. Acta, 497, 93, 10.1016/j.aca.2003.08.050 Wang, 2000, Microfabricated electrophoresis chips for simultaneous bioassays of glucose uric acid, ascorbic acid, and acetaminophen, Anal. Chem., 72, 2514, 10.1021/ac991489l Han, 2010, Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode, Electroanalysis, 22, 2001, 10.1002/elan.201000094 Wang, 2009, Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode, Microchim. Acta, 164, 357, 10.1007/s00604-008-0066-6 Majidi, 2013, Carbon nanotube-ionic liquid nanocomposite modified carbon-ceramic electrode for determination of dopamine in real samples, Cent. Eur. J. Chem., 11, 1172 Thomas, 2013, Multi-walled carbon nanotube modified carbon paste electrode as an electrochemical sensor for the determination of epinephrine in the presence of ascorbic acid and uric acid, Mater. Sci. Eng. C Mater. Biol. Appl., 33, 3294, 10.1016/j.msec.2013.04.010 Oliveira, 2013, Highly sensitive and selective basal plane pyrolytic graphite electrode modified with 1,4-naphthoquinone/MWCNT for simultaneous determination of dopamine, ascorbate and urate, Electroanalysis, 25, 723, 10.1002/elan.201200515 Habibi, 2010, Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry, Electrochim. Acta, 55, 5492, 10.1016/j.electacta.2010.04.052 Wang, 2013, Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using a palladium nanoparticle/graphene/chitosan modified electrode, J. Electroanal. Chem., 695, 10, 10.1016/j.jelechem.2013.02.021 Babaei, 2013, A multi-walled carbon nanotube and nickel hydroxide nanoparticle composite-modified glassy carbon electrode as a new sensor for the sensitive simultaneous determination of ascorbic acid, dopamine and uric acid, Sensor Lett., 11, 413, 10.1166/sl.2013.2738 Temocin, 2013, Modification of glassy carbon electrode in basic medium by electrochemical treatment for simultaneous determination of dopamine, ascorbic acid and uric acid, Sens. Actuators B: Chem., 176, 796, 10.1016/j.snb.2012.09.078 Britto, 1996, Carbon nanotube electrode for oxidation of dopamine, Bioelectrochem. Bioenerg., 41, 121, 10.1016/0302-4598(96)05078-7 Jiang, 2009, Electroanalysis of dopamine at RuO2 modified vertically aligned carbon nanotube electrode, Electroanalysis, 21, 1811, 10.1002/elan.200904607 Munoz, 2001, Gold electrodes from compact discs modified with platinum for amperometric determination of ascorbic acid in pharmaceutical formulations, Talanta, 55, 855, 10.1016/S0039-9140(01)00515-X Kumar, 2008, Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71, Biosens. Bioelectron., 24, 518, 10.1016/j.bios.2008.05.007 Wang, 2002, Investigation of the electrocatalytic behavior of single-wall carbon nanotube films on an Au electrode, Microchem. J., 73, 325, 10.1016/S0026-265X(02)00102-9 Hočevar, 2005, Carbon nanotube modified microelectrode for enhanced voltammetric detection of dopamine in the presence of ascorbate, Electroanalysis, 17, 417, 10.1002/elan.200403175 Tsierkezos, 2010, Synthesis and electrochemistry of multiwalled carbon nanotube films directly attached on silica substrate, J. Solid State Electrochem., 14, 1101, 10.1007/s10008-009-0924-0 Tsierkezos, 2010, Electrochemical impedance spectroscopy and cyclic voltammetry of ferrocene in acetonitrile/acetone system, J. Appl. Electrochem., 40, 409, 10.1007/s10800-009-0011-3 Tsierkezos, 2011, Application of films consisting of carbon nanoparticles for electrochemical detection of redox systems in organic solvent media, Fuller. Nanotub. Carbon Nanostruct., 19, 505, 10.1080/1536383X.2010.494782 Tsierkezos, 2011, Electrochemistry on multi-walled carbon nanotubes in organic solutions, J. Solut. Chem., 40, 1645, 10.1007/s10953-011-9735-x Köhler, 2013, Why is micro segmented flow particularly promising for the synthesis of nanomaterials?, Chem. Eng. Technol., 36, 887, 10.1002/ceat.201200695 Hafermann, 2015, Photochemical micro continuous-flow synthesis of noble metal nanoparticles of the platinum group, Chem. Eng. Technol., 38, 1138, 10.1002/ceat.201500029 Knauer, 2011, Au/Ag/Au double shell nanoparticles with narrow size distribution obtained by continuous micro segmented flow synthesis, Chem. Eng. J., 166, 1164, 10.1016/j.cej.2010.12.028 Knauer, 2012, Microsegmented flow-through synthesis of silver nanoprisms with exact tunable optical properties, J. Phys. Chem. C, 116, 9251, 10.1021/jp210842g Knauer, 2013, Screening of multiparameter spaces for silver nanoprism synthesis by microsegmented flow technique, Chem. Ing. Tech., 85, 467, 10.1002/cite.201200206 Szroeder, 2010, Electrocatalytic properties of carbon nanotube carpets grown on Si-wafers, Carbon, 48, 4489, 10.1016/j.carbon.2010.08.009 Tsierkezos, 2014, Nitrogen-doped multi-walled carbon nanotubes modified with platinum, palladium, rhodium and silver nanoparticles in electrochemical sensing, J. Nanopart. Res., 16, 2660, 10.1007/s11051-014-2660-3 Dawson, 1986 Karim-Nezhad, 2009, Electro-oxidation of ascorbic acid catalyzed on cobalthydroxide-modified glassy carbon electrode, J. Serbian Chem. Soc, 74, 581, 10.2298/JSC0905581K Xiao, 2011, Hollow nitrogen-doped carbon microspheres pyrolyzed from self-polymerized dopamine and its application in simultaneous electrochemical determination of uric acid, ascorbic acid and dopamine, Biosens. Bioelectron., 26, 2934, 10.1016/j.bios.2010.11.041 Nicholson, 1964, Theory of stationary electrode polarography: single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Anal. Chem., 36, 706, 10.1021/ac60210a007 Owens, 1978, Electrochemical oxidation of uric acid and xanthine: an investigation by cyclic voltammetry, double potential step chronoamperometry and thin-layer spectroelectrochemistry, J. Electroanal. Chem., 91, 231 Dryhurst, 1972, Electrochemical oxidation of uric acid and xanthine at the pyrolytic graphite electrode: mechanistic interpretation of electrochemistry, J. Electrochem. Soc., 119, 1659, 10.1149/1.2404066 Karabinas, 1984, Kinetic parameters and mechanism of the electrochemical oxidation of L-ascorbic acid on platinum electrodes in acid solutions, J. Electroanal. Chem., 160, 159, 10.1016/S0022-0728(84)80122-9 Karabinas, 1985, Comparative electrochemical study of L-ascorbic acid and dihydroxyfumaric acid on a mercury electrode in neutral media, Bioelectrochem. Bioenerg., 14, 469, 10.1016/0302-4598(85)80019-2 Smith, 1974, Photoemission spectra and band structures of d-band metals. III. Model band calculations on Rh, Pd Ag, Ir, Pt, and Au, Phys. Rev. B, 9, 1365, 10.1103/PhysRevB.9.1365 Smith, 1974, Photoemission spectra and band structures of d-band metals. X-ray photoemission spectra and densities of states in Rh, Pd Ag, Ir, Pt, and Au, Phys. Rev. B, 10, 3197, 10.1103/PhysRevB.10.3197 Thiagarajan, 2007, Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid, Talanta, 74, 212, 10.1016/j.talanta.2007.05.049 Arguello, 2008, Simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid by methylene blue adsorbed on a phosphorylated zirconia-silica composite electrode, Electrochim. Acta, 54, 560, 10.1016/j.electacta.2008.07.021