Electrochemical analysis of ascorbic acid, dopamine, and uric acid on nobel metal modified nitrogen-doped carbon nanotubes
Tài liệu tham khảo
Jiang, 2010, A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode, Biosens. Bioelectron., 25, 1402, 10.1016/j.bios.2009.10.038
Zhang, 2010, A highly sensitive nonenzymatic glucose sensor based on NiO-modified multi-walled carbon nanotubes, Microchim. Acta, 168, 259, 10.1007/s00604-010-0288-2
Sherigara, 2003, Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes, Electroanalysis, 15, 753, 10.1002/elan.200390094
Matzui, 2005, Transport properties of composites with carbon nanotube-based composites, Fuller. Nanotub. Carbon Nanostruct., 13, 259, 10.1081/FST-200039294
Ovsienko, 2007, Resistance of nanocarbon material containing nanotubes, Mol. Cryst. Liq. Cryst., 468, 289, 10.1080/15421400701231582
Che, 1998, Carbon nanotubule membranes for electrochemical energy storage and production, Nature, 393, 346, 10.1038/30694
Wang, 2001, Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization, Anal. Chem., 73, 5576, 10.1021/ac0107148
Joo, 2001, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles, Nature, 412, 169, 10.1038/35084046
Li, 2012, Ultrasensitive Pb(II) potentiometric sensor based on copolyaniline nanoparticles in a plasticizer-free membrane with a long lifetime, Anal. Chem., 84, 134, 10.1021/ac2028886
Huang, 2014, Synthesis of semiconducting polymer microparticles as solid ionophore with abundant complexing sites for long-life Pb(II) sensors, ACS Appl. Mater. Interfaces, 6, 22096, 10.1021/am505463f
Huang, 2013, Lead-ion potentiometric sensor based on electrically conducting microparticles of sulfonic phenylenediamine copolymer, Analyst, 138, 3820, 10.1039/c3an00346a
Huang, 2014, Combinatorial screening of potentiometric Pb(II) sensors from polysulfoaminoanthraquinone solid ionophore, ACS Comb. Sci., 16, 128, 10.1021/co400140g
Huang, 2011, Lead ion-selective electrodes based on polyphenylenediamine as unique solid ionophores, Talanta, 85, 1575, 10.1016/j.talanta.2011.06.049
Macanás, 2006, Preparation and characterization of polymer-stabilized metal nanoparticles for sensor applications, Phys. Status Solidi A, 203, 1194, 10.1002/pssa.200566167
Li, 2007, Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode, Sens. Actuators B: Chem., 124, 486, 10.1016/j.snb.2007.01.021
Katz, 2004, Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles, Electroanalysis, 16, 19, 10.1002/elan.200302930
Hernandez-Santos, 2002, Metal-nanoparticles based electroanalysis, Electroanalysis, 14, 1225, 10.1002/1521-4109(200210)14:18<1225::AID-ELAN1225>3.0.CO;2-Z
Raj, 2003, Gold nanoparticle arrays for the voltammetric sensing of dopamine, J. Electroanal. Chem., 543, 127, 10.1016/S0022-0728(02)01481-X
Dursun, 2010, Simultaneous determination of ascorbic acid, dopamine and uric acid at Pt nanoparticles decorated multiwall carbon nanotubes modified GCE, Electroanalysis, 22, 1106, 10.1002/elan.200900525
Benes, 2001, Carlsson and the discovery of dopamine, Trends Pharmacol. Sci., 22, 46, 10.1016/S0165-6147(00)01607-2
Andre, 2010, Analytical strategies to evaluate antioxidants in food: a review, Trends Food Sci. Technol., 21, 229, 10.1016/j.tifs.2009.12.003
Faulkner, 1984, Chemical microstructures on electrodes, Chem. Eng. News, 62, 28, 10.1021/cen-v062n009.p028
Dutt, 1974, Determination of uric acid at the microgram level by a kinetic procedure based on a pseudo-induction period, Anal. Chem., 46, 1777, 10.1021/ac60348a041
Wightman, 1988, Real-time characterization of dopamine overflow and uptake in the rat striatum, Neuroscience, 25, 513, 10.1016/0306-4522(88)90255-2
Prasad, 2008, Molecularly imprinted polymer-based solid-phase microextraction fiber coupled with molecularly imprinted polymer-based sensor for ultratrace analysis of ascorbic acid, J. Chromatogr. A, 1198–1199, 59, 10.1016/j.chroma.2008.05.059
Liu, 2007, H. Ju Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives, Anal. Chem., 79, 8055, 10.1021/ac070927i
Fraisse, 2002, A colorimetric 96-well microtiter plate assay for the determination of urate oxidase activity and its kinetic parameters, Anal. Biochem., 309, 173, 10.1016/S0003-2697(02)00293-2
Wang, 2003, Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent, Anal. Chim. Acta, 497, 93, 10.1016/j.aca.2003.08.050
Wang, 2000, Microfabricated electrophoresis chips for simultaneous bioassays of glucose uric acid, ascorbic acid, and acetaminophen, Anal. Chem., 72, 2514, 10.1021/ac991489l
Han, 2010, Simultaneous determination of ascorbic acid, dopamine and uric acid with chitosan-graphene modified electrode, Electroanalysis, 22, 2001, 10.1002/elan.201000094
Wang, 2009, Simultaneous determination of dopamine, uric acid and ascorbic acid with LaFeO3 nanoparticles modified electrode, Microchim. Acta, 164, 357, 10.1007/s00604-008-0066-6
Majidi, 2013, Carbon nanotube-ionic liquid nanocomposite modified carbon-ceramic electrode for determination of dopamine in real samples, Cent. Eur. J. Chem., 11, 1172
Thomas, 2013, Multi-walled carbon nanotube modified carbon paste electrode as an electrochemical sensor for the determination of epinephrine in the presence of ascorbic acid and uric acid, Mater. Sci. Eng. C Mater. Biol. Appl., 33, 3294, 10.1016/j.msec.2013.04.010
Oliveira, 2013, Highly sensitive and selective basal plane pyrolytic graphite electrode modified with 1,4-naphthoquinone/MWCNT for simultaneous determination of dopamine, ascorbate and urate, Electroanalysis, 25, 723, 10.1002/elan.201200515
Habibi, 2010, Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry, Electrochim. Acta, 55, 5492, 10.1016/j.electacta.2010.04.052
Wang, 2013, Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid using a palladium nanoparticle/graphene/chitosan modified electrode, J. Electroanal. Chem., 695, 10, 10.1016/j.jelechem.2013.02.021
Babaei, 2013, A multi-walled carbon nanotube and nickel hydroxide nanoparticle composite-modified glassy carbon electrode as a new sensor for the sensitive simultaneous determination of ascorbic acid, dopamine and uric acid, Sensor Lett., 11, 413, 10.1166/sl.2013.2738
Temocin, 2013, Modification of glassy carbon electrode in basic medium by electrochemical treatment for simultaneous determination of dopamine, ascorbic acid and uric acid, Sens. Actuators B: Chem., 176, 796, 10.1016/j.snb.2012.09.078
Britto, 1996, Carbon nanotube electrode for oxidation of dopamine, Bioelectrochem. Bioenerg., 41, 121, 10.1016/0302-4598(96)05078-7
Jiang, 2009, Electroanalysis of dopamine at RuO2 modified vertically aligned carbon nanotube electrode, Electroanalysis, 21, 1811, 10.1002/elan.200904607
Munoz, 2001, Gold electrodes from compact discs modified with platinum for amperometric determination of ascorbic acid in pharmaceutical formulations, Talanta, 55, 855, 10.1016/S0039-9140(01)00515-X
Kumar, 2008, Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71, Biosens. Bioelectron., 24, 518, 10.1016/j.bios.2008.05.007
Wang, 2002, Investigation of the electrocatalytic behavior of single-wall carbon nanotube films on an Au electrode, Microchem. J., 73, 325, 10.1016/S0026-265X(02)00102-9
Hočevar, 2005, Carbon nanotube modified microelectrode for enhanced voltammetric detection of dopamine in the presence of ascorbate, Electroanalysis, 17, 417, 10.1002/elan.200403175
Tsierkezos, 2010, Synthesis and electrochemistry of multiwalled carbon nanotube films directly attached on silica substrate, J. Solid State Electrochem., 14, 1101, 10.1007/s10008-009-0924-0
Tsierkezos, 2010, Electrochemical impedance spectroscopy and cyclic voltammetry of ferrocene in acetonitrile/acetone system, J. Appl. Electrochem., 40, 409, 10.1007/s10800-009-0011-3
Tsierkezos, 2011, Application of films consisting of carbon nanoparticles for electrochemical detection of redox systems in organic solvent media, Fuller. Nanotub. Carbon Nanostruct., 19, 505, 10.1080/1536383X.2010.494782
Tsierkezos, 2011, Electrochemistry on multi-walled carbon nanotubes in organic solutions, J. Solut. Chem., 40, 1645, 10.1007/s10953-011-9735-x
Köhler, 2013, Why is micro segmented flow particularly promising for the synthesis of nanomaterials?, Chem. Eng. Technol., 36, 887, 10.1002/ceat.201200695
Hafermann, 2015, Photochemical micro continuous-flow synthesis of noble metal nanoparticles of the platinum group, Chem. Eng. Technol., 38, 1138, 10.1002/ceat.201500029
Knauer, 2011, Au/Ag/Au double shell nanoparticles with narrow size distribution obtained by continuous micro segmented flow synthesis, Chem. Eng. J., 166, 1164, 10.1016/j.cej.2010.12.028
Knauer, 2012, Microsegmented flow-through synthesis of silver nanoprisms with exact tunable optical properties, J. Phys. Chem. C, 116, 9251, 10.1021/jp210842g
Knauer, 2013, Screening of multiparameter spaces for silver nanoprism synthesis by microsegmented flow technique, Chem. Ing. Tech., 85, 467, 10.1002/cite.201200206
Szroeder, 2010, Electrocatalytic properties of carbon nanotube carpets grown on Si-wafers, Carbon, 48, 4489, 10.1016/j.carbon.2010.08.009
Tsierkezos, 2014, Nitrogen-doped multi-walled carbon nanotubes modified with platinum, palladium, rhodium and silver nanoparticles in electrochemical sensing, J. Nanopart. Res., 16, 2660, 10.1007/s11051-014-2660-3
Dawson, 1986
Karim-Nezhad, 2009, Electro-oxidation of ascorbic acid catalyzed on cobalthydroxide-modified glassy carbon electrode, J. Serbian Chem. Soc, 74, 581, 10.2298/JSC0905581K
Xiao, 2011, Hollow nitrogen-doped carbon microspheres pyrolyzed from self-polymerized dopamine and its application in simultaneous electrochemical determination of uric acid, ascorbic acid and dopamine, Biosens. Bioelectron., 26, 2934, 10.1016/j.bios.2010.11.041
Nicholson, 1964, Theory of stationary electrode polarography: single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Anal. Chem., 36, 706, 10.1021/ac60210a007
Owens, 1978, Electrochemical oxidation of uric acid and xanthine: an investigation by cyclic voltammetry, double potential step chronoamperometry and thin-layer spectroelectrochemistry, J. Electroanal. Chem., 91, 231
Dryhurst, 1972, Electrochemical oxidation of uric acid and xanthine at the pyrolytic graphite electrode: mechanistic interpretation of electrochemistry, J. Electrochem. Soc., 119, 1659, 10.1149/1.2404066
Karabinas, 1984, Kinetic parameters and mechanism of the electrochemical oxidation of L-ascorbic acid on platinum electrodes in acid solutions, J. Electroanal. Chem., 160, 159, 10.1016/S0022-0728(84)80122-9
Karabinas, 1985, Comparative electrochemical study of L-ascorbic acid and dihydroxyfumaric acid on a mercury electrode in neutral media, Bioelectrochem. Bioenerg., 14, 469, 10.1016/0302-4598(85)80019-2
Smith, 1974, Photoemission spectra and band structures of d-band metals. III. Model band calculations on Rh, Pd Ag, Ir, Pt, and Au, Phys. Rev. B, 9, 1365, 10.1103/PhysRevB.9.1365
Smith, 1974, Photoemission spectra and band structures of d-band metals. X-ray photoemission spectra and densities of states in Rh, Pd Ag, Ir, Pt, and Au, Phys. Rev. B, 10, 3197, 10.1103/PhysRevB.10.3197
Thiagarajan, 2007, Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid, Talanta, 74, 212, 10.1016/j.talanta.2007.05.049
Arguello, 2008, Simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid by methylene blue adsorbed on a phosphorylated zirconia-silica composite electrode, Electrochim. Acta, 54, 560, 10.1016/j.electacta.2008.07.021