Structure of the Prefusion Form of the Vesicular Stomatitis Virus Glycoprotein G

American Association for the Advancement of Science (AAAS) - Tập 315 Số 5813 - Trang 843-848 - 2007
Stéphane Roche1,2,3,4, F.A. Rey5, Yves Gaudin6, Stéphane Bressanelli5
1IGH - Institut de génétique humaine (institut de Génétique humaine 141 Rue de la Cardonille 34396 MONTPELLIER CEDEX 5 - France)
2SEESIB - Synthèse et étude de systèmes à intêret biologique (bat. Chimie 4, chimie 3 RDC 24, av. des Landais 63177 AUBIERE CEDEX - France)
3SPSMS - UMR 9001 - Service de Physique Statistique, Magnétisme et Supraconductivité (SPSMS - UMR 9001, Institut Nanosciences et Cryogénie, CEA/Grenoble, 17 rue des Martyrs 38054 Grenoble Cedex 9 - France)
4Smurfit Institute of Genetics (Dublin 2 - Ireland)
5Virologie Structurale (25-28 rue du Docteur Roux, F-75724 Paris cedex 15 - France)
6CNRS, Unité Mixte de Recherche (UMR) 2472, Institut National de la Recherche Agronomique (INRA), UMR 1157, Institut Fédératif de Recherche 115, Laboratoire de Virologie Moléculaire et Structurale, 91198, Gif sur Yvette, France.

Tóm tắt

Glycoprotein G of the vesicular stomatitis virus triggers membrane fusion via a low pH–induced structural rearrangement. Despite the equilibrium between the pre- and postfusion states, the structure of the prefusion form, determined to 3.0 angstrom resolution, shows that the fusogenic transition entails an extensive structural reorganization of G. Comparison with the structure of the postfusion form suggests a pathway for the conformational change. In the prefusion form, G has the shape of a tripod with the fusion loops exposed, which point toward the viral membrane, and with the antigenic sites located at the distal end of the molecule. A large number of G glycoproteins, perhaps organized as in the crystals, act cooperatively to induce membrane merging.

Từ khóa


Tài liệu tham khảo

J. K. Rose, M. A. Whitt, in Fields' Virology, D. M. Knipe, P. M. Howley, Eds. (Lippincott, Williams & Wilkins, Philadelphia, ed. 4, 2001), pp. 1221–1244.

B. L. Rao et al., Lancet364, 869 (2004).

10.1038/ncb1269

L. H. Luo, Y. Li, R. M. Snyder, R. R. Wagner, Virology163, 341 (1988).

A. Benmansour et al., J. Virol.65, 4198 (1991).

10.1016/0042-6822(86)90328-4

10.1128/jvi.65.9.4853-4859.1991

10.1083/jcb.105.5.1957

Y. Gaudin, Subcell. Biochem.34, 379 (2000).

10.1128/jvi.67.3.1365-1372.1993

10.1074/jbc.270.29.17575

10.1006/viro.1996.0092

10.1021/bi9702851

10.1074/jbc.M008753200

10.1006/viro.2002.1429

10.1128/jvi.69.9.5528-5534.1995

10.1126/science.1127683

M. Kielian, F. A. Rey, Nat. Rev. Microbiol.4, 67 (2006).

10.1038/371037a0

10.1016/S0092-8674(00)81710-9

10.1073/pnas.0503989102

10.1038/nature02165

10.1038/sj.emboj.7600064

10.1038/nature02239

10.1126/science.1126548

Y. Gaudin, R. W. Ruigrok, C. Tuffereau, M. Knossow, A. Flamand, Virology187, 627 (1992).

Single-letter abbreviations for the amino acid residues are as follows: A Ala; C Cys; D Asp; E Glu; F Phe; G Gly; H His; I Ile; K Lys; L Leu; M Met; N Asn; P Pro; Q Gln; R Arg; S Ser; T Thr; V Val; W Trp; and Y Tyr.

F. Forster, O. Medalia, N. Zauberman, W. Baumeister, D. Fass, Proc. Natl. Acad. Sci. U.S.A.102, 4729 (2005).

P. Zhu et al., Nature441, 847 (2006).

10.1038/nature04322

10.1128/jvi.70.11.7371-7378.1996

E. Krissinel, K. Henrick, in CompLife 2005, M. R. Berthold, R. Glen, K. Diederichs, O. Kohlbacher, I. Fischer, Eds., Lecture Notes in Bioinformatics, vol. 3695 (Springer-Verlag, Berlin, 2005), pp. 163–174.

F. Lafay, A. Benmansour, K. Chebli, A. Flamand, J. Gen. Virol.77, 339 (1996).

Y. Gaudin, J. Virol.71, 3742 (1997).

C. Tuffereau, J. Benejean, D. Blondel, B. Kieffer, A. Flamand, EMBO J.17, 7250 (1998).

L. V. Chernomordik, M. M. Kozlov, Cell123, 375 (2005).

C. M. Carr, C. Chaudhry, P. S. Kim, Proc. Natl. Acad. Sci. U.S.A.94, 14306 (1997).

W. L. Delano The PyMOL Molecular Graphics System (DeLano Scientific San Carlos CA 2002) available at www.pymol.org.

We thank A. Flamand for constant support on this project; J. Lepault R. Ruigrok M. Knossow A. Benmansour C. Tuffereau and D. Blondel for helpful discussions at different stages of this work; and C. Maheu for virus purification. Data collections were performed at the Swiss Light Source (SLS) Paul Scherrer Institut Villigen Switzerland and at the European Synchrotron Radiation Facility (ESRF) Grenoble France. We acknowledge the help of T. Tomizaki (beamline X06SA SLS) G. Leonard and D. Bourgeois (beamlines ID29 and ID23-2 ESRF) and S. Duquerroy and G. Squires in data collection. We acknowledge support from the CNRS and INRA the CNRS program “Physique et Chimie du Vivant ” the INRA Animal health department program “Les virus des animaux et leurs interactions avec la cellule ” the Ministère de l'éducation nationale de la recherche et de la technologie program “Action Concertée Incitative blanche ” and the Agence Nationale de la Recherche program. S.R. was the recipient of an Agence Nationale de Recherche sur le Sida fellowship during part of this project. Coordinates and structure factors have been deposited with the Protein Data Bank under accession code 2j6j.