A fully explicit three‐step SPH algorithm for simulation of non‐Newtonian fluid flow
Tóm tắt
Tài liệu tham khảo
Baaijens, F.P.T. (1998), “Mixed finite element methods for viscoelastic flow analysis: a review”, Journal of Non‐Newtonian Fluid Mechanics, Vol. 79, pp. 361‐85.
Benz, W., Bowers, R.L., Cameron, A.G.W. and Press, W.H. (1990), “SPH”, Ap. J., Vol. 348, pp. 647‐67.
Bingham, E.G. (1922), Fluidity and Plasticity, McGraw‐Hill, New York, NY.
Bird, R.B., Armstrong, R.C. and Hassager, O. (1987), Dynamics of Polymeric Liquids‐Fluid Mechanics, 2nd ed., Vol. 1, Wiley, New York, NY.
Bonet, J. and Lok, T.S.L. (1999), “Variational and momentum preservation aspects of smooth particle hydrodynamic formulations”, Comput. Methods Appl. Mech. Engrg., Vol. 180, pp. 97‐115.
Bose, A. and Carey, G.F. (1999), “Least‐squares p‐r finite element methods for incompressible non‐newtonian flows”, Comput. Methods Appl. Mech. Engrg., Vol. 180, pp. 431‐58.
Chaniotis, A.K., Poulikakos, D. and Koumoutasakos, P. (2002), “Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows”, J. Comp. Physics, Vol. 182, pp. 67‐90.
Cleary, P., Ha, J., Alguine, V. and Nguyen, T. (2002), “Flow modelling in casting processes”, Applied Mathematical Modelling, Vol. 26, pp. 171‐90.
Colagrossi, A. and Landrini, M. (2003), “Numerical simulation of interfacial flows by smoothed particle hydrodynamics”, J. Comp. Physics, Vol. 191, pp. 448‐75.
Cummins, S.J. and Rudman, M. (1999), “An SPH projection method”, J. Comp. Physics, Vol. 152, pp. 584‐607.
Ellero, M., Kroger, M. and Hess, S. (2002), “Viscoelastic flows studied by smoothed particle hydrodynamics”, Journal of Non‐Newtonian Fluid Mechanics, Vol. 105, pp. 35‐51.
Fulk, D.A. and Quinn, D.W. (1996), “An analysis of 1‐d smoothed particle hydrodynamics kernels”, J. Comp. Physics, Vol. 126, pp. 165‐80.
Gingold, R.A. and Monaghan, J.J. (1977), “Smoothed particle hydrodnamics: theory and application to nonspherical stars”, Monthly Notices of the Royal Astronomical Society, Vol. 181, pp. 275‐389.
Gingold, R.A. and Monaghan, J.J. (1982), “Kernel estimates as a basis for general particle methods in hydrodynamics”, J. Comp. Physics, Vol. 46, pp. 429‐53.
Hongbin, J. and Xin, D. (2004), “On criterions for smoothed particle hydrodynamics kernels in stable field”, J. Comp. Physics, Vol. 202 No. 2, pp. 699‐709.
Kelecy, F.J. and Fletcher, R.H. (1997), “The development of a free surface capturing approach for multidimensional free surface flow in closed container”, J. Comp. Physics, Vol. 138, pp. 939‐80.
Komatina, D. and Jovanovic, M. (1997), “Experimental study of steady and unsteady free surface flows with water‐clay mixtures”, J. Hydraul. Res., Vol. 35 No. 5, pp. 579‐90.
Koshizuka, S., Nobe, A. and Oka, Y. (1998), “Numerical analysis of breaking waves using the moving particle semi‐implicit method”, Int. J. Numer. Methods Fluids, Vol. 26, pp. 751‐69.
Koshizuka, S., Oka, Y. and Tamako, H. (1995), “A particle method for calculating splashing of incompressible viscous fluid”, paper presented at International Conference on Mathematics and Computations, Vol. 2, pp. 1514‐21.
Loewenstein, M. and Mathews, W.G. (1986), “Adiabatic particle hydrodynamics in three dimensions”, J. Comp. Physics, Vol. 62 No. 2, pp. 414‐28.
Lucy, L.B. (1977), “A numerical approach to the testing of the fission hypothesis”, Astron. J., Vol. 82, pp. 1013‐20.
Matallah, H., Townsend, P. and Webster, M.F. (2002), “Viscoelastic computations of polymeric wire‐coating flows”, Int. J. Num. Meth. Heat Fluid Flow, Vol. 12 No. 4, pp. 404‐33.
Monaghan, J.J. (1985), “Extrapolating b‐splines for interpolation”, J. Comp. Physics, Vol. 60 No. 2, pp. 253‐62.
Monaghan, J.J. (1992), “Smoothed particle hydrodynamics”, Annul. Rev. Astron. Astrophys., Vol. 30, pp. 543‐74.
Monaghan, J.J. (1994), “Simulating free surface flows with SPH”, J. Comp. Physics, Vol. 110, pp. 399‐406.
Monaghan, J.J. and Gingold, R.A. (1983), “Shock simulation by the particle method SPH”, J. Comp. Physics, Vol. 52, pp. 374‐89.
Morris, J.P., Fox, P.J. and Zhu, Y. (1997), “Modeling low Reynolds number incompressible flows using SPH”, J. Comp. Physics, Vol. 136, pp. 214‐26.
Owen, J.M. (2004), “A tensor viscosity for SPH”, J. Comp. Physics, Vol. 201, pp. 610‐29.
Owens, R.G. and Phillips, T.N. (2002), Computational Rheology, Imperial College Press, London.
Renardy, M. (2000), “Current issues in non‐Newtonian flows: a mathematical perspective”, Journal of Non‐Newtonian Fluid Mechanics, Vol. 90, pp. 243‐59.
Schlatter, B. (1999), “A pedagogical tool using smoothed particle hydrodynamics to model fluid flow past a system of cylinders”, Technical Report, Oregon State University, Corvallis, OR.
Shao, S. and Lo, E.Y.M. (2003), “Incompressible SPH method for simulating Newtonian and non‐Newtonian flows with a free surface”, Advances in Water Resources, Vol. 26, pp. 787‐800.
Takeda, H., Miyama, S.M. and Sekiya, M. (1994), “Numerical simulation of viscous flow by smoothed particle hydrodynamics”, Progress of Theoretical Physics, Vol. 92 No. 5, pp. 939‐60.
Van Kessel, T. and Kranenburg, C. (1996), “Gravity current of fluid mud on sloping bed”, Journal of Hydraulic Engineering, Vol. 122 No. 12, pp. 710‐6.
Vola, D., Babik, F. and Latche, J.C. (2004), “On a numerical strategy to compute gravity currents of non‐Newtonian fluids”, J. Comp. Physics, Vol. 201 No. 2, pp. 397‐420.
Webster, M.F., Tamaddon‐Jahromi, H.R. and Aboubacar, M. (2004), “Transient viscoelastic flows in planar contractions”, Journal of Non‐Newtonian Fluid Mechanics, Vol. 118 Nos 2/3, pp. 83‐101.
Welton, W.C. (1998), “Two‐dimensional PDF/SPH simulation of compressible turbulent flows”, J. Comp. Physics, Vol. 139, pp. 410‐43.
Wood, D. (1981), “Collapse and fragmentation of isothermal gas clouds”, Monthly Notices of the Royal Astronomical Society, Vol. 194 No. 1, pp. 201‐18.