Advances in genetics of migraine

Heidi G. Sutherland1, Cassie L. Albury1, Lyn R. Griffiths1
1Genomics Research Centre, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia

Tóm tắt

Migraine is a complex neurovascular disorder with a strong genetic component. There are rare monogenic forms of migraine, as well as more common polygenic forms; research into the genes involved in both types has provided insights into the many contributing genetic factors. This review summarises advances that have been made in the knowledge and understanding of the genes and genetic variations implicated in migraine etiology. Migraine is characterised into two main types, migraine without aura (MO) and migraine with aura (MA). Hemiplegic migraine is a rare monogenic MA subtype caused by mutations in three main genes - CACNA1A, ATP1A2 and SCN1A - which encode ion channel and transport proteins. Functional studies in cellular and animal models show that, in general, mutations result in impaired glutamatergic neurotransmission and cortical hyperexcitability, which make the brain more susceptible to cortical spreading depression, a phenomenon thought to coincide with aura symptoms. Variants in other genes encoding ion channels and solute carriers, or with roles in regulating neurotransmitters at neuronal synapses, or in vascular function, can also cause monogenic migraine, hemiplegic migraine and related disorders with overlapping symptoms. Next-generation sequencing will accelerate the finding of new potentially causal variants and genes, with high-throughput bioinformatics analysis methods and functional analysis pipelines important in prioritising, confirming and understanding the mechanisms of disease-causing variants. With respect to common migraine forms, large genome-wide association studies (GWAS) have greatly expanded our knowledge of the genes involved, emphasizing the role of both neuronal and vascular pathways. Dissecting the genetic architecture of migraine leads to greater understanding of what underpins relationships between subtypes and comorbid disorders, and may have utility in diagnosis or tailoring treatments. Further work is required to identify causal polymorphisms and the mechanism of their effect, and studies of gene expression and epigenetic factors will help bridge the genetics with migraine pathophysiology. The complexity of migraine disorders is mirrored by their genetic complexity. A comprehensive knowledge of the genetic factors underpinning migraine will lead to improved understanding of molecular mechanisms and pathogenesis, to enable better diagnosis and treatments for migraine sufferers.

Từ khóa


Tài liệu tham khảo

(IHS) HCCotIHS (2018) The international classification of headache disorders, 3rd edition. Cephalalgia 38(1):1–211 Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S (2017) Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev 97(2):553–622 Noseda R, Burstein R (2013) Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain 154(Suppl 1):S44–S53 Ferrari MD, Klever RR, Terwindt GM, Ayata C, van den Maagdenberg AM (2015) Migraine pathophysiology: lessons from mouse models and human genetics. Lancet Neurol 14(1):65–80 Messlinger K, Fischer MJ, Lennerz JK (2011) Neuropeptide effects in the trigeminal system: pathophysiology and clinical relevance in migraine. Keio J Med 60(3):82–89 Levy D (2012) Endogenous mechanisms underlying the activation and sensitization of meningeal nociceptors: the role of immuno-vascular interactions and cortical spreading depression. Curr Pain Headache Rep 16(3):270–277 Burstein R, Jakubowski M, Rauch SD (2011) The science of migraine. J Vestib Res 21(6):305–314 Dodick DW (2018) A phase-by-phase review of migraine pathophysiology. Headache 58(Suppl 1):4–16 Kramer DR, Fujii T, Ohiorhenuan I, Liu CY (2016) Cortical spreading depolarization: pathophysiology, implications, and future directions. J Clin Neurosci 24:22–27 Goadsby PJ (2001) Migraine, aura, and cortical spreading depression: why are we still talking about it? Ann Neurol 49(1):4–6 Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA (2002) Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med 8(2):136–142 Zhang X, Levy D, Kainz V, Noseda R, Jakubowski M, Burstein R (2011) Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol 69(5):855–865 Karatas H, Erdener SE, Gursoy-Ozdemir Y, Lule S, Eren-Kocak E, Sen ZD et al (2013) Spreading depression triggers headache by activating neuronal Panx1 channels. Science 339(6123):1092–1095 Burstein R, Noseda R, Borsook D (2015) Migraine: multiple processes, complex pathophysiology. J Neurosci 35(17):6619–6629 Stankewitz A, Aderjan D, Eippert F, May A (2011) Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci 31(6):1937–1943 Lang E, Kaltenhauser M, Neundorfer B, Seidler S (2004) Hyperexcitability of the primary somatosensory cortex in migraine--a magnetoencephalographic study. Brain 127(Pt 11):2459–2469 Aurora SK, Barrodale PM, Tipton RL, Khodavirdi A (2007) Brainstem dysfunction in chronic migraine as evidenced by neurophysiological and positron emission tomography studies. Headache 47(7):996–1003 discussion 4-7 Vecchia D, Pietrobon D (2012) Migraine: a disorder of brain excitatory-inhibitory balance? Trends Neurosci 35(8):507–520 Honkasalo ML, Kaprio J, Winter T, Heikkila K, Sillanpaa M, Koskenvuo M (1995) Migraine and concomitant symptoms among 8167 adult twin pairs. Headache 35(2):70–78 Mulder EJ, Van Baal C, Gaist D, Kallela M, Kaprio J, Svensson DA et al (2003) Genetic and environmental influences on migraine: a twin study across six countries. Twin Res 6(5):422–431 Polderman TJ, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM et al (2015) Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet 47(7):702–709 Pelzer N, Stam AH, Haan J, Ferrari MD, Terwindt GM (2013) Familial and sporadic hemiplegic migraine: diagnosis and treatment. Curr Treat Options Neurol 15(1):13–27 Russell MB, Ducros A (2011) Sporadic and familial hemiplegic migraine: pathophysiological mechanisms, clinical characteristics, diagnosis, and management. Lancet Neurol 10(5):457–470 Kors EE, Terwindt GM, Vermeulen FL, Fitzsimons RB, Jardine PE, Heywood P et al (2001) Delayed cerebral edema and fatal coma after minor head trauma: role of the CACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine. Ann Neurol 49(6):753–760 Lykke Thomsen L, Kirchmann Eriksen M, Faerch Romer S, Andersen I, Ostergaard E, Keiding N et al (2002) An epidemiological survey of hemiplegic migraine. Cephalalgia 22(5):361–375 Barros J, Ruano L, Domingos J, Tuna A, Damasio J, Alonso I et al (2014) The prevalence of familial hemiplegic migraine with cerebellar ataxia and spinocerebellar ataxia type 6 in Portugal. Headache 54(5):911–915 Terwindt GM, Ophoff RA, Haan J, Vergouwe MN, van Eijk R, Frants RR et al (1998) Variable clinical expression of mutations in the P/Q-type calcium channel gene in familial hemiplegic migraine. Dutch Migraine Genetics Research Group. Neurology 50(4):1105–1110 Angelini C, Van Gils J, Bigourdan A, Jouk PS, Lacombe D, Menegon P et al (2018) Major intra-familial phenotypic heterogeneity and incomplete penetrance due to a CACNA1A pathogenic variant. Eur J Med Genet. https://doi.org/10.1016/j.ejmg.2018.08.011. [Epub ahead of print] Kors EE, Haan J, Giffin NJ, Pazdera L, Schnittger C, Lennox GG et al (2003) Expanding the phenotypic spectrum of the CACNA1A gene T666M mutation: a description of 5 families with familial hemiplegic migraine. Arch Neurol 60(5):684–688 Hiekkala ME, Vuola P, Artto V, Happola P, Happola E, Vepsalainen S et al (2018) The contribution of CACNA1A, ATP1A2 and SCN1A mutations in hemiplegic migraine: a clinical and genetic study in Finnish migraine families. Cephalalgia 38(12):1849–1863 Cregg R, Momin A, Rugiero F, Wood JN, Zhao J (2010) Pain channelopathies. J Physiol 588(Pt 11):1897–1904 Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM et al (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87(3):543–552 Catterall WA (1998) Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium 24(5–6):307–323 Labrum RW, Rajakulendran S, Graves TD, Eunson LH, Bevan R, Sweeney MG et al (2009) Large scale calcium channel gene rearrangements in episodic ataxia and hemiplegic migraine: implications for diagnostic testing. J Med Genet 46(11):786–791 Grieco GS, Gagliardi S, Ricca I, Pansarasa O, Neri M, Gualandi F et al (2018) New CACNA1A deletions are associated to migraine phenotypes. J Headache Pain 19(1):75 Ducros A, Denier C, Joutel A, Cecillon M, Lescoat C, Vahedi K et al (2001) The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N Engl J Med 345(1):17–24 Di Lorenzo C, Grieco GS, Santorelli FM (2012) Migraine headache: a review of the molecular genetics of a common disorder. J Headache Pain 13(7):571–580 Tottene A, Fellin T, Pagnutti S, Luvisetto S, Striessnig J, Fletcher C et al (2002) Familial hemiplegic migraine mutations increase ca (2+) influx through single human CaV2.1 channels and decrease maximal CaV2.1 current density in neurons. Proc Natl Acad Sci U S A 99(20):13284–13289 Tournier-Lasserve E (1999) CACNA1A mutations: hemiplegic migraine, episodic ataxia type 2, and the others. Neurology 53(1):3–4 de Vries B, Frants RR, Ferrari MD, van den Maagdenberg AM (2009) Molecular genetics of migraine. Hum Genet 126(1):115–132 Pelzer N, Haan J, Stam AH, Vijfhuizen LS, Koelewijn SC, Smagge A et al (2018) Clinical spectrum of hemiplegic migraine and chances of finding a pathogenic mutation. Neurology 90(7):e575–ee82 van den Maagdenberg AM, Pietrobon D, Pizzorusso T, Kaja S, Broos LA, Cesetti T et al (2004) A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41(5):701–710 Eikermann-Haerter K, Dilekoz E, Kudo C, Savitz SI, Waeber C, Baum MJ et al (2009) Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J Clin Invest 119(1):99–109 Eroli F, Vilotti S, van den Maagdenberg A, Nistri A (2017) Hyperpolarization-activated current Ih in mouse trigeminal sensory neurons in a transgenic mouse model of familial hemiplegic migraine type-1. Neuroscience 351:47–64 Tottene A, Conti R, Fabbro A, Vecchia D, Shapovalova M, Santello M et al (2009) Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in ca(v)2.1 knockin migraine mice. Neuron 61(5):762–773 Hullugundi SK, Ansuini A, Ferrari MD, van den Maagdenberg AM, Nistri A (2014) A hyperexcitability phenotype in mouse trigeminal sensory neurons expressing the R192Q Cacna1a missense mutation of familial hemiplegic migraine type-1. Neuroscience 266:244–254 Marchenkova A, van den Maagdenberg AM, Nistri A (2016) Loss of inhibition by brain natriuretic peptide over P2X3 receptors contributes to enhanced spike firing of trigeminal ganglion neurons in a mouse model of familial hemiplegic migraine type-1. Neuroscience 331:197–205 Khennouf L, Gesslein B, Lind BL, van den Maagdenberg AM, Lauritzen M (2016) Activity-dependent calcium, oxygen, and vascular responses in a mouse model of familial hemiplegic migraine type 1. Ann Neurol 80(2):219–232 Chanda ML, Tuttle AH, Baran I, Atlin C, Guindi D, Hathaway G et al (2013) Behavioral evidence for photophobia and stress-related ipsilateral head pain in transgenic Cacna1a mutant mice. Pain 154(8):1254–1262 Chen SP, Tolner EA, Eikermann-Haerter K (2016) Animal models of monogenic migraine. Cephalalgia 36(7):704–721 Brusich DJ, Spring AM, James TD, Yeates CJ, Helms TH, Frank CA (2018) Drosophila CaV2 channels harboring human migraine mutations cause synapse hyperexcitability that can be suppressed by inhibition of a Ca2+ store release pathway. PLoS Genet 14(8):e1007577 Pereira Mda C, Morais S, Sequeiros J, Alonso I (2016) Large-Scale Functional RNAi Screen in C. elegans Identifies TGF-beta and Notch Signaling Pathways as Modifiers of CACNA1A. ASN Neuro 8(2):1-10 Gormley P, Anttila V, Winsvold BS, Palta P, Esko T, Pers TH et al (2016) Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet 48(8):856–866 Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG (2009) Cadasil. Lancet Neurol 8(7):643–653 Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C et al (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 15(1):62–69 Blumenfeld AE, Victorio MC, Berenson FR (2016) Complicated migraines. Semin Pediatr Neurol 23(1):18–22 Jen J, Kim GW, Baloh RW (2004) Clinical spectrum of episodic ataxia type 2. Neurology 62(1):17–22 Sinke RJ, Ippel EF, Diepstraten CM, Beemer FA, Wokke JH, van Hilten BJ et al (2001) Clinical and molecular correlations in spinocerebellar ataxia type 6: a study of 24 Dutch families. Arch Neurol 58(11):1839–1844 Mantuano E, Romano S, Veneziano L, Gellera C, Castellotti B, Caimi S et al (2010) Identification of novel and recurrent CACNA1A gene mutations in fifteen patients with episodic ataxia type 2. J Neurol Sci 291(1–2):30–36 Watase K, Barrett CF, Miyazaki T, Ishiguro T, Ishikawa K, Hu Y et al (2008) Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels. Proc Natl Acad Sci U S A 105(33):11987–11992 De Fusco M, Marconi R, Silvestri L, Atorino L, Rampoldi L, Morgante L et al (2003) Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet 33(2):192–196 Friedrich T, Tavraz NN, Junghans C (2016) ATP1A2 mutations in migraine: seeing through the facets of an ion pump onto the neurobiology of disease. Front Physiol 7:239 Benarroch EE (2010) Glutamate transporters: diversity, function, and involvement in neurologic disease. Neurology 74(3):259–264 Jurkat-Rott K, Freilinger T, Dreier JP, Herzog J, Gobel H, Petzold GC et al (2004) Variability of familial hemiplegic migraine with novel A1A2 Na+/K+-ATPase variants. Neurology 62(10):1857–1861 Bassi MT, Bresolin N, Tonelli A, Nazos K, Crippa F, Baschirotto C et al (2004) A novel mutation in the ATP1A2 gene causes alternating hemiplegia of childhood. J Med Genet 41(8):621–628 Deprez L, Weckhuysen S, Peeters K, Deconinck T, Claeys KG, Claes LR et al (2008) Epilepsy as part of the phenotype associated with ATP1A2 mutations. Epilepsia 49(3):500–508 Al-Bulushi B, Al-Hashem A, Tabarki B (2014) A wide clinical phenotype spectrum in patients with ATP1A2 mutations. J Child Neurol 29(2):265–268 Vanmolkot KR, Stroink H, Koenderink JB, Kors EE, van den Heuvel JJ, van den Boogerd EH et al (2006) Severe episodic neurological deficits and permanent mental retardation in a child with a novel FHM2 ATP1A2 mutation. Ann Neurol 59(2):310–314 Roth C, Freilinger T, Kirovski G, Dunkel J, Shah Y, Wilken B et al (2014) Clinical spectrum in three families with familial hemiplegic migraine type 2 including a novel mutation in the ATP1A2 gene. Cephalalgia 34(3):183–190 Sampedro Castaneda M, Zanoteli E, Scalco RS, Scaramuzzi V, Marques Caldas V, Conti Reed U et al (2018) A novel ATP1A2 mutation in a patient with hypokalaemic periodic paralysis and CNS symptoms. Brain 141(12):3308–3318 Pelzer N, Blom DE, Stam AH, Vijfhuizen LS, Hageman A, van Vliet JA et al (2017) Recurrent coma and fever in familial hemiplegic migraine type 2. A prospective 15-year follow-up of a large family with a novel ATP1A2 mutation. Cephalalgia 37(8):737–755 Carreno O, Corominas R, Serra SA, Sintas C, Fernandez-Castillo N, Vila-Pueyo M et al (2013) Screening of CACNA1A and ATP1A2 genes in hemiplegic migraine: clinical, genetic, and functional studies. Mol Genet Genomic Med 1(4):206–222 Riant F, De Fusco M, Aridon P, Ducros A, Ploton C, Marchelli F et al (2005) ATP1A2 mutations in 11 families with familial hemiplegic migraine. Hum Mutat 26(3):281 Riant F, Ducros A, Ploton C, Barbance C, Depienne C, Tournier-Lasserve E (2010) De novo mutations in ATP1A2 and CACNA1A are frequent in early-onset sporadic hemiplegic migraine. Neurology 75(11):967–972 Gagliardi S, Grieco GS, Gualandi F, Caniatti LM, Groppo E, Valente M et al (2017) De novo exonic duplication of ATP1A2 in Italian patient with hemiplegic migraine: a case report. J Headache Pain 18(1):63 Segall L, Mezzetti A, Scanzano R, Gargus JJ, Purisima E, Blostein R (2005) Alterations in the alpha2 isoform of Na,K-ATPase associated with familial hemiplegic migraine type 2. Proc Natl Acad Sci U S A 102(31):11106–11111 Tavraz NN, Friedrich T, Durr KL, Koenderink JB, Bamberg E, Freilinger T et al (2008) Diverse functional consequences of mutations in the Na+/K+-ATPase alpha2-subunit causing familial hemiplegic migraine type 2. J Biol Chem 283(45):31097–31106 Capendeguy O, Horisberger JD (2004) Functional effects of Na+,K+-ATPase gene mutations linked to familial hemiplegic migraine. NeuroMolecular Med 6(2–3):105–116 Koenderink JB, Zifarelli G, Qiu LY, Schwarz W, De Pont JJ, Bamberg E et al (2005) Na,K-ATPase mutations in familial hemiplegic migraine lead to functional inactivation. Biochim Biophys Acta 1669(1):61–68 Tavraz NN, Durr KL, Koenderink JB, Freilinger T, Bamberg E, Dichgans M et al (2009) Impaired plasma membrane targeting or protein stability by certain ATP1A2 mutations identified in sporadic or familial hemiplegic migraine. Channels (Austin) 3(2):82–87 Ikeda K, Onaka T, Yamakado M, Nakai J, Ishikawa TO, Taketo MM et al (2003) Degeneration of the amygdala/piriform cortex and enhanced fear/anxiety behaviors in sodium pump alpha2 subunit (Atp1a2)-deficient mice. J Neurosci 23(11):4667–4676 Monteiro FP, Curry CJ, Hevner R, Elliott S, Fisher JH, Turocy J et al (2019) Biallelic loss of function variants in ATP1A2 cause hydrops fetalis, microcephaly, arthrogryposis and extensive cortical malformations. Eur J Med Genet. https://doi.org/10.1016/j.ejmg.2019.01.014. [Epub ahead of print] Unekawa M, Ikeda K, Tomita Y, Kawakami K, Suzuki N (2018) Enhanced susceptibility to cortical spreading depression in two types of Na(+),K(+)-ATPase alpha2 subunit-deficient mice as a model of familial hemiplegic migraine 2. Cephalalgia 38(9):1515–1524 Leo L, Gherardini L, Barone V, De Fusco M, Pietrobon D, Pizzorusso T et al (2011) Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet 7(6):e1002129 Capuani C, Melone M, Tottene A, Bragina L, Crivellaro G, Santello M et al (2016) Defective glutamate and K+ clearance by cortical astrocytes in familial hemiplegic migraine type 2. EMBO Mol Med 8(8):967–986 Bottger P, Glerup S, Gesslein B, Illarionova NB, Isaksen TJ, Heuck A et al (2016) Glutamate-system defects behind psychiatric manifestations in a familial hemiplegic migraine type 2 disease-mutation mouse model. Sci Rep 6:22047 Gritz SM, Radcliffe RA (2013) Genetic effects of ATP1A2 in familial hemiplegic migraine type II and animal models. Hum Genomics 7:8 Isaksen TJ, Lykke-Hartmann K (2016) Insights into the pathology of the alpha2-Na(+)/K(+)-ATPase in neurological disorders; lessons from animal models. Front Physiol 7:161 Pietrobon D, Moskowitz MA (2013) Pathophysiology of migraine. Annu Rev Physiol 75:365–391 Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B, Biskup S et al (2005) Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366(9483):371–377 Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26(1):13–25 Meng H, Xu HQ, Yu L, Lin GW, He N, Su T et al (2015) The SCN1A mutation database: updating information and analysis of the relationships among genotype, functional alteration, and phenotype. Hum Mutat 36(6):573–580 Sutherland HG, Griffiths LR (2017) Genetics of migraine: insights into the molecular basis of migraine disorders. Headache 57(4):537–569 Zhang Y, Chen N, Zhou M, Guo J, Guo J, He L (2017) A novel SCN1A mutation identified in a Chinese family with familial hemiplegic migraine: a case report. Cephalalgia 37(13):1294–1298 Mantegazza M, Cestele S (2018) Pathophysiological mechanisms of migraine and epilepsy: similarities and differences. Neurosci Lett 667:92–102 Le Fort D, Safran AB, Picard F, Bouchardy I, Morris MA (2004) Elicited repetitive daily blindness: a new familial disorder related to migraine and epilepsy. Neurology 63(2):348–350 Castro MJ, Stam AH, Lemos C, de Vries B, Vanmolkot KR, Barros J et al (2009) First mutation in the voltage-gated Nav1.1 subunit gene SCN1A with co-occurring familial hemiplegic migraine and epilepsy. Cephalalgia 29(3):308–313 Vanmolkot KR, Babini E, de Vries B, Stam AH, Freilinger T, Terwindt GM et al (2007) The novel p.L1649Q mutation in the SCN1A epilepsy gene is associated with familial hemiplegic migraine: genetic and functional studies. Mutation in brief #957. Online. Hum Mutat 28(5):522 Catterall WA (2018) Dravet syndrome: a Sodium Channel Interneuronopathy. Curr Opin Physiol 2:42–50 Escayg A, Goldin AL (2010) Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia 51(9):1650–1658 Marini C, Scheffer IE, Nabbout R, Suls A, De Jonghe P, Zara F et al (2011) The genetics of Dravet syndrome. Epilepsia 52(Suppl 2):24–29 Ogiwara I, Miyamoto H, Morita N, Atapour N, Mazaki E, Inoue I et al (2007) Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci 27(22):5903–5914 Yu FH, Mantegazza M, Westenbroek RE, Robbins CA, Kalume F, Burton KA et al (2006) Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 9(9):1142–1149 Cestele S, Scalmani P, Rusconi R, Terragni B, Franceschetti S, Mantegazza M (2008) Self-limited hyperexcitability: functional effect of a familial hemiplegic migraine mutation of the Nav1.1 (SCN1A) Na+ channel. J Neurosci 28(29):7273–7283 Cestele S, Labate A, Rusconi R, Tarantino P, Mumoli L, Franceschetti S et al (2013) Divergent effects of the T1174S SCN1A mutation associated with seizures and hemiplegic migraine. Epilepsia 54(5):927–935 Fan C, Wolking S, Lehmann-Horn F, Hedrich UB, Freilinger T, Lerche H et al (2016) Early-onset familial hemiplegic migraine due to a novel SCN1A mutation. Cephalalgia 36(13):1238-1247 Bertelli S, Barbieri R, Pusch M, Gavazzo P (2018) Gain of function of sporadic/familial hemiplegic migraine-causing SCN1A mutations: use of an optimized cDNA. Cephalalgia 39(4):477-488 Pellacani S, Sicca F, Di Lorenzo C, Grieco GS, Valvo G, Cereda C et al (2016) The revolution in migraine genetics: from aching channels disorders to a next-generation medicine. Front Cell Neurosci 10:156 Kahlig KM, Rhodes TH, Pusch M, Freilinger T, Pereira-Monteiro JM, Ferrari MD et al (2008) Divergent sodium channel defects in familial hemiplegic migraine. Proc Natl Acad Sci U S A 105(28):9799–9804 Cestele S, Schiavon E, Rusconi R, Franceschetti S, Mantegazza M (2013) Nonfunctional NaV1.1 familial hemiplegic migraine mutant transformed into gain of function by partial rescue of folding defects. Proc Natl Acad Sci U S A 110(43):17546–17551 Dhifallah S, Lancaster E, Merrill S, Leroudier N, Mantegazza M, Cestele S (2018) Gain of function for the SCN1A/hNav1.1-L1670W mutation responsible for familial hemiplegic migraine. Front Mol Neurosci 11:232 de Vries B, Freilinger T, Vanmolkot KR, Koenderink JB, Stam AH, Terwindt GM et al (2007) Systematic analysis of three FHM genes in 39 sporadic patients with hemiplegic migraine. Neurology 69(23):2170–2176 Silveira-Moriyama L, Kovac S, Kurian MA, Houlden H, Lees AJ, Walker MC et al (2018) Phenotypes, genotypes, and the management of paroxysmal movement disorders. Dev Med Child Neurol 60(6):559–565 Lee HY, Xu Y, Huang Y, Ahn AH, Auburger GW, Pandolfo M et al (2004) The gene for paroxysmal non-kinesigenic dyskinesia encodes an enzyme in a stress response pathway. Hum Mol Genet 13(24):3161–3170 Rainier S, Thomas D, Tokarz D, Ming L, Bui M, Plein E et al (2004) Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonic choreoathetosis. Arch Neurol 61(7):1025–1029 Chen W-J, Lin Y, Xiong Z-Q, Wei W, Ni W, Tan G-H et al (2011) Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet 43:1252 Wang J-L, Cao L, Li X-H, Hu Z-M, Li J-D, Zhang J-G et al (2011) Identification of PRRT2 as the causative gene of paroxysmal kinesigenic dyskinesias. Brain 134(12):3493–3501 Gardiner AR, Jaffer F, Dale RC, Labrum R, Erro R, Meyer E et al (2015) The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain 138(Pt 12):3567–3580 Heron SE, Grinton BE, Kivity S, Afawi Z, Zuberi SM, Hughes JN et al (2012) PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 90(1):152–160 Ono S, Yoshiura K, Kinoshita A, Kikuchi T, Nakane Y, Kato N et al (2012) Mutations in PRRT2 responsible for paroxysmal kinesigenic dyskinesias also cause benign familial infantile convulsions. J Hum Genet 57(5):338–341 Riant F, Roze E, Barbance C, Meneret A, Guyant-Marechal L, Lucas C et al (2012) PRRT2 mutations cause hemiplegic migraine. Neurology 79(21):2122–2124 Marini C, Conti V, Mei D, Battaglia D, Lettori D, Losito E et al (2012) PRRT2 mutations in familial infantile seizures, paroxysmal dyskinesia, and hemiplegic migraine. Neurology 79(21):2109–2114 Dale RC, Gardiner A, Antony J, Houlden H (2012) Familial PRRT2 mutation with heterogeneous paroxysmal disorders including paroxysmal torticollis and hemiplegic migraine. Dev Med Child Neurol 54(10):958–960 Ebrahimi-Fakhari D, Saffari A, Westenberger A, Klein C (2015) The evolving spectrum of PRRT2-associated paroxysmal diseases. Brain 138(Pt 12):3476–3495 Pelzer N, de Vries B, Kamphorst JT, Vijfhuizen LS, Ferrari MD, Haan J et al (2014) PRRT2 and hemiplegic migraine: a complex association. Neurology 83(3):288–290 Lee HY, Huang Y, Bruneau N, Roll P, Roberson ED, Hermann M et al (2012) Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep 1(1):2–12 Valente P, Castroflorio E, Rossi P, Fadda M, Sterlini B, Cervigni RI et al (2016) PRRT2 is a key component of the ca (2+)-dependent neurotransmitter release machinery. Cell Rep 15(1):117–131 Fruscione F, Valente P, Sterlini B, Romei A, Baldassari S, Fadda M et al (2018) PRRT2 controls neuronal excitability by negatively modulating Na+ channel 1.2/1.6 activity. Brain 141(4):1000–1016 Condliffe SB, Corradini I, Pozzi D, Verderio C, Matteoli M (2010) Endogenous SNAP-25 regulates native voltage-gated calcium channels in glutamatergic neurons. J Biol Chem 285(32):24968–24976 Weller CM, Leen WG, Neville BG, Duncan JS, de Vries B, Geilenkirchen MA et al (2015) A novel SLC2A1 mutation linking hemiplegic migraine with alternating hemiplegia of childhood. Cephalalgia 35(1):10–15 Mohammad SS, Coman D, Calvert S (2014) Glucose transporter 1 deficiency syndrome and hemiplegic migraines as a dominant presenting clinical feature. J Paediatr Child Health 50(12):1025–1026 Jen JC, Wan J, Palos TP, Howard BD, Baloh RW (2005) Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology 65(4):529–534 Kovermann P, Hessel M, Kortzak D, Jen JC, Koch J, Fahlke C et al (2017) Impaired K(+) binding to glial glutamate transporter EAAT1 in migraine. Sci Rep 7(1):13913 Suzuki M, Van Paesschen W, Stalmans I, Horita S, Yamada H, Bergmans BA et al (2010) Defective membrane expression of the Na(+)-HCO (3)(−) cotransporter NBCe1 is associated with familial migraine. Proc Natl Acad Sci U S A 107(36):15963–15968 Lafreniere RG, Cader MZ, Poulin JF, Andres-Enguix I, Simoneau M, Gupta N et al (2010) A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat Med 16(10):1157–1160 Kang D, Kim D (2006) TREK-2 (K2P10.1) and TRESK (K2P18.1) are major background K+ channels in dorsal root ganglion neurons. Am J Phys Cell Physiol 291(1):C138–C146 Enyedi P, Czirjak G (2015) Properties, regulation, pharmacology, and functions of the K (2) p channel, TRESK. Pflugers Arch 467(5):945–958 Dobler T, Springauf A, Tovornik S, Weber M, Schmitt A, Sedlmeier R et al (2007) TRESK two-pore-domain K+ channels constitute a significant component of background potassium currents in murine dorsal root ganglion neurones. J Physiol 585(Pt 3):867–879 Chae YJ, Zhang J, Au P, Sabbadini M, Xie GX, Yost CS (2010) Discrete change in volatile anesthetic sensitivity in mice with inactivated tandem pore potassium ion channel TRESK. Anesthesiology 113(6):1326–1337 Liu P, Xiao Z, Ren F, Guo Z, Chen Z, Zhao H et al (2013) Functional analysis of a migraine-associated TRESK K+ channel mutation. J Neurosci 33(31):12810–12824 Guo Z, Liu P, Ren F, Cao YQ (2014) Nonmigraine-associated TRESK K+ channel variant C110R does not increase the excitability of trigeminal ganglion neurons. J Neurophysiol 112(3):568–579 Andres-Enguix I, Shang L, Stansfeld PJ, Morahan JM, Sansom MS, Lafreniere RG et al (2012) Functional analysis of missense variants in the TRESK (KCNK18) K channel. Sci Rep 2:237 Royal P, Andres-Bilbe A, Avalos Prado P, Verkest C, Wdziekonski B, Schaub S et al (2019) Migraine-associated TRESK mutations increase neuronal excitability through alternative translation initiation and inhibition of TREK. Neuron 101(2):232–45 e6 Brennan KC, Bates EA, Shapiro RE, Zyuzin J, Hallows WC, Huang Y et al (2013) Casein kinase idelta mutations in familial migraine and advanced sleep phase. Sci Transl Med 5(183):183ra56, 1–183ra56,11 Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N et al (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434(7033):640–644 Xu Y, Toh KL, Jones CR, Shin JY, Fu YH, Ptacek LJ (2007) Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128(1):59–70 Alstadhaug KB (2009) Migraine and the hypothalamus. Cephalalgia 29(8):809–817 Ahn AH, Goadsby PJ (2013) Migraine and sleep: new connections. Cerebrum 2013:15 Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby PJ (2014) Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain 137(Pt 1):232–241 Williams LB, Javed A, Sabri A, Morgan DJ, Huff CD, Grigg JR et al (2019) ALPK1 missense pathogenic variant in five families leads to ROSAH syndrome, an ocular multisystem autosomal dominant disorder. Genet Med. https://doi.org/10.1038/s41436-019-0476-3. [Epub ahead of print] Dichgans M, Mayer M, Uttner I, Bruning R, Muller-Hocker J, Rungger G et al (1998) The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol 44(5):731–739 Guey S, Mawet J, Herve D, Duering M, Godin O, Jouvent E et al (2016) Prevalence and characteristics of migraine in CADASIL. Cephalalgia 36(11):1038–1047 Tan RY, Markus HS (2016) CADASIL: migraine, encephalopathy, stroke and their inter-relationships. PLoS One 11(6):e0157613 Liem MK, Oberstein SA, van der Grond J, Ferrari MD, Haan JCADASIL (2010) Migraine: a narrative review. Cephalalgia 30(11):1284–1289 Rossi G, Shambhu S (2018) Hemiplegic migraine as the initial presentation of biopsy positive cerebral autosomal dominant Arteriopathy with subcortical infarcts and leukoencephalopathy. Cureus 10(5):e2631 Rice GI, Rodero MP, Crow YJ (2015) Human disease phenotypes associated with mutations in TREX1. J Clin Immunol 35(3):235–243 Stam AH, Kothari PH, Shaikh A, Gschwendter A, Jen JC, Hodgkinson S et al (2016) Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Brain 139(11):2909-2922 Stam AH, Haan J, van den Maagdenberg AM, Ferrari MD, Terwindt GM (2009) Migraine and genetic and acquired vasculopathies. Cephalalgia 29(9):1006–1017 Breedveld G, de Coo IF, Lequin MH, Arts WF, Heutink P, Gould DB et al (2006) Novel mutations in three families confirm a major role of COL4A1 in hereditary porencephaly. J Med Genet 43(6):490–495 Sondergaard CB, Nielsen JE, Hansen CK, Christensen H (2017) Hereditary cerebral small vessel disease and stroke. Clin Neurol Neurosurg 155:45–57 Gormley P, Winsvold BS, Nyholt DR, Kallela M, Chasman DI, Palotie A (2016) Migraine genetics: from genome-wide association studies to translational insights. Genome Med 8(1):86 van den Maagdenberg A, Nyholt DR, Anttila V (2019) Novel hypotheses emerging from GWAS in migraine? J Headache Pain 20(1):5 Hansen RD, Christensen AF, Olesen J (2017) Family studies to find rare high risk variants in migraine. J Headache Pain 18(1):32 Hu Y, Jiang H, Wang Q, Xie Z, Pan S (2013) Identification of a novel nonsense mutation p.Tyr1957Ter of CACNA1A in a Chinese family with episodic ataxia 2. PLoS One 8(2):e56362 Oh SK, Baek JI, Weigand KM, Venselaar H, Swarts HG, Park SH et al (2015) A missense variant of the ATP1A2 gene is associated with a novel phenotype of progressive sensorineural hearing loss associated with migraine. Eur J Hum Genet 23(5):639–645 Maksemous N, Roy B, Smith RA, Griffiths LR (2016) Next-generation sequencing identifies novel CACNA1A gene mutations in episodic ataxia type 2. Mol Genet Genomic Med 4(2):211–222 Maksemous N, Smith RA, Haupt LM, Griffiths LR (2016) Targeted next generation sequencing identifies novel NOTCH3 gene mutations in CADASIL diagnostics patients. Hum Genomics 10(1):38 Klassen T, Davis C, Goldman A, Burgess D, Chen T, Wheeler D et al (2011) Exome sequencing of ion channel genes reveals complex profiles confounding personal risk assessment in epilepsy. Cell 145(7):1036–1048 Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nature 536(7616):285–291 Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S et al (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44(D1):D862–D868 Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40(Web Server issue):W452–W457 Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249 Karchin R (2009) Next generation tools for the annotation of human SNPs. Brief Bioinform 10(1):35–52 Frousios K, Iliopoulos CS, Schlitt T, Simpson MA (2013) Predicting the functional consequences of non-synonymous DNA sequence variants--evaluation of bioinformatics tools and development of a consensus strategy. Genomics 102(4):223–228 Schwarz JM, Rodelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7(8):575–576 Lee D, Gorkin DU, Baker M, Strober BJ, Asoni AL, McCallion AS et al (2015) A method to predict the impact of regulatory variants from DNA sequence. Nat Genet 47(8):955–961 Rojano E, Seoane P, Ranea JAG, Perkins JR (2018) Regulatory variants: from detection to predicting impact. Brief Bioinform. https://doi.org/10.1093/bib/bby039. [Epub ahead of print] Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355 Nemeth AH, Kwasniewska AC, Lise S, Parolin Schnekenberg R, Becker EB, Bera KD et al (2013) Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain 136(Pt 10):3106–3118 Handel AE, Chintawar S, Lalic T, Whiteley E, Vowles J, Giustacchini A et al (2016) Assessing similarity to primary tissue and cortical layer identity in induced pluripotent stem cell-derived cortical neurons through single-cell transcriptomics. Hum Mol Genet 25(5):989–1000 Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379 Ipe J, Swart M, Burgess KS, Skaar TC (2017) High-throughput assays to assess the functional impact of genetic variants: a road towards genomic-driven medicine. Clin Transl Sci 10(2):67–77 Fowler DM, Stephany JJ, Fields S (2014) Measuring the activity of protein variants on a large scale using deep mutational scanning. Nat Protoc 9(9):2267–2284 Li T, Lu G, Chiang EY, Chernov-Rogan T, Grogan JL, Chen J (2017) High-throughput electrophysiological assays for voltage gated ion channels using SyncroPatch 768PE. PLoS One 12(7):e0180154 Dale RC, Gardiner A, Branson JA, Houlden H (2014) Benefit of carbamazepine in a patient with hemiplegic migraine associated with PRRT2 mutation. Dev Med Child Neurol 56(9):910 Maher BH, Griffiths LR (2011) Identification of molecular genetic factors that influence migraine. Mol Gen Genomics 285(6):433–446 Kondratieva N, Azimova J, Skorobogatykh K, Sergeev A, Naumova E, Kokaeva Z et al (2016) Biomarkers of migraine: part 1 - genetic markers. J Neurol Sci 369:63–76 Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10(1):111–113 Rubino E, Ferrero M, Rainero I, Binello E, Vaula G, Pinessi L (2009) Association of the C677T polymorphism in the MTHFR gene with migraine: a meta-analysis. Cephalalgia 29(8):818–825 Schurks M, Rist PM, Kurth T (2010) MTHFR 677C>T and ACE D/I polymorphisms in migraine: a systematic review and meta-analysis. Headache 50(4):588–599 Samaan Z, Gaysina D, Cohen-Woods S, Craddock N, Jones L, Korszun A et al (2011) Methylenetetrahydrofolate reductase gene variant (MTHFR C677T) and migraine: a case control study and meta-analysis. BMC Neurol 11:66 Liu R, Geng P, Ma M, Yu S, Yang M, He M et al (2014) MTHFR C677T polymorphism and migraine risk: a meta-analysis. J Neurol Sci 336(1–2):68–73 Kaunisto MA, Kallela M, Hamalainen E, Kilpikari R, Havanka H, Harno H et al (2006) Testing of variants of the MTHFR and ESR1 genes in 1798 Finnish individuals fails to confirm the association with migraine with aura. Cephalalgia 26(12):1462–1472 Todt U, Freudenberg J, Goebel I, Netzer C, Heinze A, Heinze-Kuhn K et al (2006) MTHFR C677T polymorphism and migraine with aura. Ann Neurol 60(5):621–622 author reply 2-3 de Vries B, Anttila V, Freilinger T, Wessman M, Kaunisto MA, Kallela M et al (2016) Systematic re-evaluation of genes from candidate gene association studies in migraine using a large genome-wide association data set. Cephalalgia 36(7):604–614 Cardon LR, Palmer LJ (2003) Population stratification and spurious allelic association. Lancet 361(9357):598–604 Anttila V, Stefansson H, Kallela M, Todt U, Terwindt GM, Calafato MS et al (2010) Genome-wide association study of migraine implicates a common susceptibility variant on 8q22. Nat Genet 42(10):869–873 Chasman DI, Schurks M, Anttila V, de Vries B, Schminke U, Launer LJ et al (2011) Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet 43(7):695–698 Freilinger T, Anttila V, de Vries B, Malik R, Kallela M, Terwindt GM et al (2012) Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet 44(7):777–782 Anttila V, Winsvold BS, Gormley P, Kurth T, Bettella F, McMahon G et al (2013) Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat Genet 45(8):912–917 Gan M, Jiang P, McLean P, Kanekiyo T, Bu G (2014) Low-density lipoprotein receptor-related protein 1 (LRP1) regulates the stability and function of GluA1 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor in neurons. PLoS One 9(12):e113237 Spuch C, Ortolano S, Navarro C (2012) LRP-1 and LRP-2 receptors function in the membrane neuron. Trafficking mechanisms and proteolytic processing in Alzheimer's disease. Front Physiol 3:269 Nakajima C, Kulik A, Frotscher M, Herz J, Schafer M, Bock HH et al (2013) Low density lipoprotein receptor-related protein 1 (LRP1) modulates N-methyl-D-aspartate (NMDA) receptor-dependent intracellular signaling and NMDA-induced regulation of postsynaptic protein complexes. J Biol Chem 288(30):21909–21923 Dussor G, Cao YQ (2016) TRPM8 and migraine. Headache 56(9):1406–1417 Chi J, Cohen P (2016) The multifaceted roles of PRDM16: adipose biology and beyond. Trends Endocrinol Metab 27(1):11–23 Chuikov S, Levi BP, Smith ML, Morrison SJ (2010) Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress. Nat Cell Biol 12(10):999–1006 Shimada IS, Acar M, Burgess RJ, Zhao Z, Morrison SJ (2017) Prdm16 is required for the maintenance of neural stem cells in the postnatal forebrain and their differentiation into ependymal cells. Genes Dev 31(11):1134–1146 Nguyen HL, Lee YJ, Shin J, Lee E, Park SO, McCarty JH et al (2011) TGF-beta signaling in endothelial cells, but not neuroepithelial cells, is essential for cerebral vascular development. Lab Investig 91(11):1554–1563 Luo SX, Timbang L, Kim JI, Shang Y, Sandoval K, Tang AA et al (2016) TGF-beta signaling in dopaminergic neurons regulates dendritic growth, excitatory-inhibitory synaptic balance, and reversal learning. Cell Rep 17(12):3233–3245 Nelson N (1999) Metal ion transporters and homeostasis. EMBO J 18(16):4361–4371 McAllister BB, Dyck RH (2017) Zinc transporter 3 (ZnT3) and vesicular zinc in central nervous system function. Neurosci Biobehav Rev 80:329–350 Telley L, Cadilhac C, Cioni JM, Saywell V, Jahannault-Talignani C, Huettl RE et al (2016) Dual function of NRP1 in axon guidance and subcellular target recognition in cerebellum. Neuron 91(6):1276–1291 Aghajanian H, Cho YK, Manderfield LJ, Herling MR, Gupta M, Ho VC et al (2016) Coronary vasculature patterning requires a novel endothelial ErbB2 holoreceptor. Nat Commun 7:12038 Spain SL, Barrett JC (2015) Strategies for fine-mapping complex traits. Hum Mol Genet 24(R1):R111–R119 Wellcome Trust Case Control C, Maller JB, McVean G, Byrnes J, Vukcevic D, Palin K et al (2012) Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat Genet 44(12):1294–1301 Gupta RM, Hadaya J, Trehan A, Zekavat SM, Roselli C, Klarin D et al (2017) A genetic variant associated with five vascular diseases is a distal regulator of Endothelin-1 gene expression. Cell 170(3):522–33 e15 Hannon E, Weedon M, Bray N, O'Donovan M, Mill J (2017) Pleiotropic effects of trait-associated genetic variation on DNA methylation: utility for refining GWAS loci. Am J Hum Genet 100(6):954–959 Eising E, Huisman SM, Mahfouz A, Vijfhuizen LS, Anttila V, Winsvold BS et al (2016) Gene co-expression analysis identifies brain regions and cell types involved in migraine pathophysiology: a GWAS-based study using the Allen human brain atlas. Hum Genet 135(4):425–439 Renthal W (2018) Localization of migraine susceptibility genes in human brain by single-cell RNA sequencing. Cephalalgia 38(13):1976–1983 LaPaglia DM, Sapio MR, Burbelo PD, Thierry-Mieg J, Thierry-Mieg D, Raithel SJ et al (2018) RNA-Seq investigations of human post-mortem trigeminal ganglia. Cephalalgia 38(5):912–932 Russell MB, Ulrich V, Gervil M, Olesen J (2002) Migraine without aura and migraine with aura are distinct disorders. A population-based twin survey. Headache 42(5):332–336 Nyholt DR, Gillespie NG, Heath AC, Merikangas KR, Duffy DL, Martin NG (2004) Latent class and genetic analysis does not support migraine with aura and migraine without aura as separate entities. Genet Epidemiol 26(3):231–244 Zhao H, Eising E, de Vries B, Vijfhuizen LS (2016) International headache genetics C, Anttila V, et al. gene-based pleiotropy across migraine with aura and migraine without aura patient groups. Cephalalgia 36(7):648–657 Chasman DI, Anttila V, Buring JE, Ridker PM, Schurks M, Kurth T et al (2014) Selectivity in genetic association with sub-classified migraine in women. PLoS Genet 10(5):e1004366 Esserlind AL, Christensen AF, Steinberg S, Grarup N, Pedersen O, Hansen T et al (2016) The association between candidate migraine susceptibility loci and severe migraine phenotype in a clinical sample. Cephalalgia 36(7):615–623 Pollock CE, Sutherland HG, Maher BH, Lea RA, Haupt LM, Frith A et al (2018) The NRP1 migraine risk variant shows evidence of association with menstrual migraine. J Headache Pain 19(1):31 Meng W, Adams MJ, Hebert HL, Deary IJ, McIntosh AM, Smith BH (2018) A genome-wide association study finds genetic associations with broadly-defined headache in UK biobank (N=223,773). EBioMedicine 28:180–186 Brainstorm Consortium, Anttila V, Bulik-Sullivan B, Finucane HK, Walters RK, Bras J et al (2018) Analysis of shared heritability in common disorders of the brain. Science 360(6395):eaap8757 Yang Y, Zhao H, Boomsma DI, Ligthart L, Belin AC, Smith GD et al (2018) Molecular genetic overlap between migraine and major depressive disorder. Eur J Hum Genet 26(8):1202–1216 Keezer MR, Bauer PR, Ferrari MD, Sander JW (2015) The comorbid relationship between migraine and epilepsy: a systematic review and meta-analysis. Eur J Neurol 22(7):1038–1047 Malik R, Freilinger T, Winsvold BS, Anttila V, Vander Heiden J, Traylor M et al (2015) Shared genetic basis for migraine and ischemic stroke: a genome-wide analysis of common variants. Neurology 84(21):2132–2145 Winsvold BS, Nelson CP, Malik R, Gormley P, Anttila V, Vander Heiden J et al (2015) Genetic analysis for a shared biological basis between migraine and coronary artery disease. Neurol Genet 1(1):e10 Kutuk MO, Tufan AE, Guler G, Yalin OO, Altintas E, Bag HG et al (2018) Migraine and associated comorbidities are three times more frequent in children with ADHD and their mothers. Brain and Development 40(10):857–864 Prontera P, Sarchielli P, Caproni S, Bedetti C, Cupini LM, Calabresi P et al (2018) Epilepsy in hemiplegic migraine: genetic mutations and clinical implications. Cephalalgia 38(2):361–373 Louter MA, Pelzer N, de Boer I, Kuijvenhoven BE, van Oosterhout WP, van Zwet EW et al (2016) Prevalence of lifetime depression in a large hemiplegic migraine cohort. Neurology 87(22):2370–2374 Linde M, Mulleners WM, Chronicle EP, McCrory DC (2013) Valproate (valproic acid or sodium valproate or a combination of the two) for the prophylaxis of episodic migraine in adults. Cochrane Database Syst Rev 24(6):CD010611 Ran C, Graae L, Magnusson PK, Pedersen NL, Olson L, Belin AC (2014) A replication study of GWAS findings in migraine identifies association in a Swedish case-control sample. BMC Med Genet 15:38 Sintas C, Fernandez-Morales J, Vila-Pueyo M, Narberhaus B, Arenas C, Pozo-Rosich P et al (2015) Replication study of previous migraine genome-wide association study findings in a Spanish sample of migraine with aura. Cephalalgia 35(9):776–782 An XK, Ma QL, Lin Q, Zhang XR, Lu CX, Qu HL (2013) PRDM16 rs2651899 variant is a risk factor for Chinese common migraine patients. Headache 53(10):1595–1601 Fan X, Wang J, Fan W, Chen L, Gui B, Tan G et al (2014) Replication of migraine GWAS susceptibility loci in Chinese Han population. Headache 54(4):709–715 Ghosh J, Pradhan S, Mittal B (2013) Genome-wide-associated variants in migraine susceptibility: a replication study from North India. Headache 53(10):1583–1594 Lin QF, Fu XG, Yao LT, Yang J, Cao LY, Xin YT et al (2015) Association of genetic loci for migraine susceptibility in the she people of China. J Headache Pain 16:553 Chen SP, Fuh JL, Chung MY, Lin YC, Liao YC, Wang YF et al (2018) Genome-wide association study identifies novel susceptibility loci for migraine in Han Chinese resided in Taiwan. Cephalalgia 38(3):466–475 Chang X, Pellegrino R, Garifallou J, March M, Snyder J, Mentch F et al (2018) Common variants at 5q33.1 predispose to migraine in African-American children. J Med Genet 55(12):831–836 Cox HC, Lea RA, Bellis C, Carless M, Dyer TD, Curran J et al (2012) A genome-wide analysis of 'Bounty' descendants implicates several novel variants in migraine susceptibility. Neurogenetics 13(3):261–266 Dudbridge F (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genet 9(3):e1003348 Chalmer MA, Esserlind AL, Olesen J, Hansen TF (2018) Polygenic risk score: use in migraine research. J Headache Pain 19(1):29 Rodriguez-Acevedo AJ, Ferreira MA, Benton MC, Carless MA, Goring HH, Curran JE et al (2015) Common polygenic variation contributes to risk of migraine in the Norfolk Island population. Hum Genet 134(10):1079–1087 Gormley P, Kurki MI, Hiekkala ME, Veerapen K, Happola P, Mitchell AA et al (2018) Common variant burden contributes to the familial aggregation of migraine in 1,589 families. Neuron 98(4):743–53 e4 Christensen AF, Esserlind AL, Werge T, Stefansson H, Stefansson K, Olesen J (2016) The influence of genetic constitution on migraine drug responses. Cephalalgia 36(7):624–639 Cargnin S, Viana M, Sances G, Cantello R, Tassorelli C, Terrazzino S (2019) Using a genetic risk score approach to predict headache response to Triptans in migraine without Aura. J Clin Pharmacol 59(2):288–294 Schurks M, Kurth T, Stude P, Rimmbach C, de Jesus J, Jonjic M et al (2007) G protein beta3 polymorphism and triptan response in cluster headache. Clin Pharmacol Ther 82(4):396–401 Gentile G, Missori S, Borro M, Sebastianelli A, Simmaco M, Martelletti P (2010) Frequencies of genetic polymorphisms related to triptans metabolism in chronic migraine. J Headache Pain 11(2):151–156 Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S et al (2014) Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet 46(11):1173–1186 Zhong K, Zhu G, Jing X, Hendriks AEJ, Drop SLS, Ikram MA et al (2017) Genome-wide compound heterozygote analysis highlights alleles associated with adult height in Europeans. Hum Genet 136(11–12):1407–1417 Marouli E, Graff M, Medina-Gomez C, Lo KS, Wood AR, Kjaer TR et al (2017) Rare and low-frequency coding variants alter human adult height. Nature 542(7640):186–190 Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR et al (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518(7538):197–206 Akiyama M, Okada Y, Kanai M, Takahashi A, Momozawa Y, Ikeda M et al (2017) Genome-wide association study identifies 112 new loci for body mass index in the Japanese population. Nat Genet 49(10):1458–1467 Gerring ZF, McRae AF, Montgomery GW, Nyholt DR (2018) Genome-wide DNA methylation profiling in whole blood reveals epigenetic signatures associated with migraine. BMC Genomics 19(1):69