Large angle illumination enabling accurate structure reconstruction from thick samples in scanning transmission electron microscopy

Ultramicroscopy - Tập 197 - Trang 112-121 - 2019
H.G. Brown1, R. Ishikawa2, G. S´anchez-Santolino2,3, N. Shibata2, Y. Ikuhara2, L.J. Allen4, S.D. Findlay1
1School of Physics and Astronomy, Monash University, Victoria 3800, Australia
2Institute of Engineering Innovation, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
3Instituto de Ciencia de Materiales de Madrid ICMM-CSIC, Madrid 28049, Spain
4School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia

Tài liệu tham khảo

Shibata, 2010, New area detector for atomic-resolution scanning transmission electron microscopy, J. Electron Microsc., 59, 473, 10.1093/jmicro/dfq014 Ryll, 2016, A pnCCD-based, fast direct single electron imaging camera for TEM and STEM, J. Instrum., 11, P04006, 10.1088/1748-0221/11/04/P04006 Tate, 2016, High dynamic range pixel array detector for scanning transmission electron microscopy, Microsc. Microanal., 22, 237, 10.1017/S1431927615015664 Waddell, 1979, Linear imaging of strong phase objects using asymmetrical detectors in STEM, Optik, 54, 83 Müller, 2014, Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction, Nat. Commun., 5653, 10.1038/ncomms6653 Lazić, 2016, Phase contrast stem for thin samples: integrated differential phase contrast, Ultramicroscopy, 160, 265, 10.1016/j.ultramic.2015.10.011 Rodenburg, 2008, Ptychography and related diffractive imaging methods, Adv. Imaging Electron Phys., 150, 87, 10.1016/S1076-5670(07)00003-1 Brown, 2016, Structure retrieval with fast electrons using segmented detectors, Phys. Rev. B, 93, 134116, 10.1103/PhysRevB.93.134116 Chen, 2016, Practical aspects of diffractive imaging using an atomic-scale coherent electron probe, Ultramicroscopy, 169, 107, 10.1016/j.ultramic.2016.06.009 Bauer, 2014, Direct detection of spontaneous polarization in wurtzite gaas nanowires, Appl. Phys. Lett., 104, 211902, 10.1063/1.4880209 Lohr, 2016, Quantitative measurements of internal electric fields with differential phase contrast microscopy on InGaN/GaN quantum well structures, Phys. Status Solidi B, 253, 140, 10.1002/pssb.201552288 Shibata, 2012, Differential phase-contrast microscopy at atomic resolution, Nat. Phys., 8, 611, 10.1038/nphys2337 Martinez, 2017, Towards a direct visualization of charge transfer in monolayer hexagonal boron nitride using a fast pixelated detector in the scanning transmission electron microscope, Microsc. Microanal., 23, 436, 10.1017/S1431927617002860 Gibson, 1994, Breakdown of the weak-phase object approximation in amorphous objects and measurement of high-resolution electron optical parameters, Ultramicroscopy, 56, 26, 10.1016/0304-3991(94)90143-0 Vulović, 2014, When to use the projection assumption and the weak-phase object approximation in phase contrast cryo-EM, Ultramicroscopy, 136, 61, 10.1016/j.ultramic.2013.08.002 Close, 2015, Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons, Ultramicroscopy, 159, 124, 10.1016/j.ultramic.2015.09.002 Müller-Caspary, 2017, Measurement of atomic electric fields and charge densities from average momentum transfers using scanning transmission electron microscopy, Ultramicroscopy, 178, 62, 10.1016/j.ultramic.2016.05.004 Ishikawa, 2015, Large-angle illumination STEM: toward three-dimensional atom-by-atom imaging, Ultramicroscopy, 151, 122, 10.1016/j.ultramic.2014.11.009 Morishita, 2017, Attainment of 40.5 pm spatial resolution using 300 kV scanning transmission electron microscope equipped with fifth-order aberration corrector, Microscopy, 67, 46, 10.1093/jmicro/dfx122 Ishikawa, 2016, Single atom visibility in STEM optical depth sectioning, Appl. Phys. Lett., 109, 163102, 10.1063/1.4965709 Peng, 2004, HAADF-STEM Imaging with sub-angstrom probes: a full bloch wave analysis, J. Electron Microsc., 53, 257, 10.1093/jmicro/53.3.257 Avilov, 2007, Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination, Ultramicroscopy, 107, 431, 10.1016/j.ultramic.2006.09.006 Landauer, 1995, Double resolution imaging of weak phase specimens with quadrant detectors in STEM, Optik, 100, 37 McCallum, 1995, Complex image reconstruction of weak specimens from a three-sector detector in STEM, Optik, 101, 53 Cowley, 1957, The scattering of electrons by atoms and crystals. I. A new theoretical approach, Acta Crystallogr., 10, 609, 10.1107/S0365110X57002194 Hansen, 2010, Discrete inverse problems: insight and algorithms, SIAM, 7, 121 Rose, 1977, Nonstandard imaging methods in electron microscopy, Ultramicroscopy, 2, 251, 10.1016/S0304-3991(76)91538-2 Allen, 2015, Modelling the inelastic scattering of fast electrons, Ultramicroscopy, 151, 11, 10.1016/j.ultramic.2014.10.011 Brown, 2017, A new method to detect and correct sample tilt in scanning transmission electron microscopy bright-field imaging, Ultramicroscopy, 173, 76, 10.1016/j.ultramic.2016.11.024 Krivanek, 1999, Toward sub-Å electron beams, Ultramicroscopy, 78, 1, 10.1016/S0304-3991(99)00013-3 Devore, 2011 Yang, 2015, Efficient phase contrast imaging in STEM using a pixelated detector. Part II: optimisation of imaging conditions, Ultramicroscopy, 151, 232, 10.1016/j.ultramic.2014.10.013 Kirkland, 2012