Genetic structure and demographic history of Colletotrichum gloeosporioides sensu lato and C. truncatum isolates from Trinidad and Mexico
Tóm tắt
C. gloeosporioides sensu lato is one of the most economically important post-harvest diseases affecting papaya production worldwide. There is currently no information concerning the genetic structure or demographic history of this pathogen in any of the affected countries. Knowledge of molecular demographic parameters for different populations will improve our understanding of the biogeographic history as well as the evolutionary and adaptive potential of these pathogens. In this study, sequence data for ACT, GPDH, β-TUB and ITS gene regions were analyzed for C. gloeosporioides sensu lato and C. truncatum isolates infecting papaya in Trinidad and Mexico in order to determine the genetic structure and demographic history of these populations. The data indicated that Mexico is the ancestral C. gloeosporioides sensu lato population with asymmetrical migration to Trinidad. Mexico also had the larger effective population size but, both Mexico and Trinidad populations exhibited population expansion. Mexico also had greater nucleotide diversity and high levels of diversity for each gene. There was significant sub-division of the Trinidad and Mexico populations and low levels of genetic divergence among populations for three of the four gene regions; β-TUB was shown to be under positive selection. There were also dissimilar haplotype characteristics for both populations. Mutation may play a role in shaping the population structure of C. gloeosporioides sensu lato isolates from Trinidad and from Mexico, especially with respect to the ACT and GPDH gene regions. There was no evidence of gene flow between the C. truncatum populations and it is possible that the Mexico and Trinidad populations emerged independently of each other. The study revealed relevant information based on the genetic structure as well as the demographic history of two fungal pathogens infecting papaya, C. gloeosporioides sensu lato and C. truncatum, in Trinidad and Mexico. Understanding the genetic structure of pathogen populations will assist in determining the evolutionary potential of the pathogen and in identifying which evolutionary forces may have the greatest impact on durability of resistance. Intervention strategies that target these evolutionary forces would prove to be the most practical.
Tài liệu tham khảo
Sutton BC: The genus Glomerella and its anamorph Colletotrichum. Colletotrichum: Biology, Pathology and Control. Edited by: Bailey JA, Jeger JJ. 1992, Wallingford, UK: CAB International, 1-26.
Cannon PF, Bridge PD, Monte E: Linking the past, present and future of Colletotrichum systematics. Colletotrichum: Host specificity, pathology, and host-pathogen interaction. Edited by: Prusky D, Freeman S, Dickman MB. 2000, St Paul, USA: APS Press, 1-20.
Lu G, Cannon PF, Reid A, Simmons CM: Diversity and molecular relationships of endophytic Colletotrichum isolates from the Iwokrama Forest Reserve, Guyana. Mycol Res. 2004, 108: 53-63. 10.1017/S0953756203008906.
Freeman S, Pham M, Rodriguez RJ: Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A+T-rich DNA, and nuclear DNA analyses. Exp Mycol. 1993, 17: 309-322. 10.1006/emyc.1993.1029.
Cannon PF, Buddie AG, Bridge PD: The typification of Colletotrichum gloeosporioides. Mycotaxon. 2008, 104: 189-204.
Damm U, Baroncelli R, Cai L, Kubo Y, O’Connell R, Weir B, Yoshino K, Cannon PF: Colletotrichum: Species, ecology and interactions. IMA Fungus. 2010, 1: 161-165. 10.5598/imafungus.2010.01.02.08.
Morton J: Papaya. Fruits of warm climates. 1987, Miami, Florida, 336-346.
Rampersad SN: Molecular and phenotypic characterization of Colletotrichum species associated with anthracnose disease of papaya in Trinidad. Plant Dis. 2011, 95: 1244-1254. 10.1094/PDIS-02-11-0080.
Yaguchi Y, Nakanishi Y, Saito T, Nakamura S: Anthracnose of Carica papaya L. caused by Colletotrichum capsici. Ann Phytopathol Soc Japan. 1995, 61: 222-
Tarnowski TBL, Ploetz RC: First report of Colletotrichum capsici causing postharvest anthracnose on papaya in South Florida. Plant Dis. 2010, 94: 1065-
Sepiah M: Efficacy of propiconazole against fungi causing postharvest disease on Eksotika papaya. International Conference, Chaing Mai (Thailand), 19th July, 1993. Australian Center for International Agricultural Research. 1994, Canberra: A.C.T. Australia
Tapia-Tussell R, Quijano-Ramayo A, Cortes-Velazquez A, Lappe P, Larque-Saavedra A, Perez-Brito D: PCR-based detection and characterization of the fungal pathogens Colletotrichum gloeosporioides and Colletotrichum capsici causing anthracnose in papaya (Carica papaya L.) in the Yucatan Peninsula. Mol Biotechnol. 2008, 40: 293-298. 10.1007/s12033-008-9093-0.
Teixeira Da Silva JA, Rashid Z, Nhut DT, Sivakumar D, Gera A, Teixeira Souza M, Tennant PF: Papaya (Carica papaya L.) Biology and Biotechnology. Tree Forestry Sci Biotechnol. 2007, 1: 47-73.
Food and Agriculture Organization (FAO) FAOSTAT: FAOSTAT. http://faostat.fao.org/,
Organisation for Economic Co-operation and Development (OECD) Territorial Reviews: Yucatan, Mexico, Volume 43 of OECD Territorial review. 2007, Yucatan, Mexico: OECD Publishing, 27-
Manshardt RM: Papaya. Biotechnology of perennial fruit crops. Edited by: Hammerschlag FA, Litz RE. 1992, Wallingford: No. 8. CABI, 489-511. No. 8. CABI, Wallingford
Purseglove JW: Caricaceae. Tropical Crops. Dicotyledons (Vol. 1). 1968, Bristol: Longmans, Green and Co, 45-51.
Weeds PL, Chakraborty S, Fernandes CD, D’A Charchar MJ, Ramesh CR, Kexian Y, Kelemu S: Genetic diversity in Colletotrichum gloeosporioides from Stylosanthes spp. at centers of origin and utilization. Phytopathology. 2003, 93: 176-185. 10.1094/PHYTO.2003.93.2.176.
Taylor JW, Geiser DM, Burt A, Koufopanou V: The evolutionary biology and population genetics underlying fungal strain typing. Clin Microbiol Rev. 1999, 12: 126-
Butlin RK: Population genomics and speciation. Genetica. 2008, 138: 409-418. 10.1007/s10709-008-9321-3.
Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C: Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One. 2010, 5: 1-8.
Bruns TD, Shefferson RP: Evolutionary studies of ectomycorrhizal fungi: recent advance and future directions. Can J Bot. 2004, 82: 1122-1132. 10.1139/b04-021.
Cai L, Hyde KD, Taylor PWJ, Weir BS, Waller J, Abang MM, Zhang JZ, Yang YL, Phoulivong S, Liu ZY, Prihastuti H, Shivas RG, McKenzie EHC, Johnston PR: A polyphasic approach for studying Colletotrichum. Fungal Divers. 2009, 39: 183-204.
Crouch JA, Clarke B, Hillman B: What is the value of ITS sequence data in Colletotrichum systematics and species diagnosis? A case study using the falcate-spored graminicolous Colletotrichum group. Mycologia. 2009, 101: 648-656. 10.3852/08-231.
Damm U, Woudenberg JHC, Cannon PF, Crous PW: Colletotrichum species with curved conidia from herbaceous hosts. Fungal Divers. 2009, 39: 45-87.
Damm U, Cannon PF, Woudenberg JH, Johnston PR, Weir BS, Tan YP, Shivas RG, Crous PW: The Colletotrichum boninense species complex. Stud Mycol. 2012, 73: 1-36. 10.3114/sim0002.
Damm U, Cannon PF, Woudenberg JH, Johnston PR, Weir BS, Tan YP, Shivas RG, Crous PW: The Colletotrichum boninense species complex. Stud Mycol. 2012, 73: 37-113. 10.3114/sim0010.
Prihastuti H, Cai L, Chen H, McKenzie EHC, Hyde KD: Characterization of Colletotrichum species associated with coffee berries in northern Thailand. Fungal Divers. 2009, 39: 89-109.
McDermott JM, McDonald BA: Gene flow in plant pathosystems. Ann Rev Phytopathol. 1993, 31: 353-373. 10.1146/annurev.py.31.090193.002033.
McDonald BA: The population genetics of fungi: Tools and techniques. Phytopathology. 1997, 87: 448-453. 10.1094/PHYTO.1997.87.4.448.
McDonald BA, Linde C: Pathogen population genetics, evolutionary potential and durable resistance. Ann Rev Phytopathol. 2002, 40: 349-379. 10.1146/annurev.phyto.40.120501.101443.
McDonald BA: Population genetics of plant pathogens. The Plant Health Instructor. 2004, 10.1094/PHI-A-2004-0524-01.
Nei M: Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA. 1973, 70: 3321-3323. 10.1073/pnas.70.12.3321.
Nei M, Tajima F: DNA polymorphism detectable by restriction endonucleases. Genetics. 1981, 97: 145-163.
Hewitt G: The genetic legacy of the Quaternary ice ages. Nature. 2000, 405: 907-913. 10.1038/35016000.
Barton NH: Evolution. 2007, Cold Spring Harbor Press: Cold Spring Harbor, 452-455.
Hedrick PW: Genetics of populations. 2000, Boston: Jones and Bartlett, 2
White TJ, Bruns T, Lee S, Taylor J: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications. Edited by: Innis MA, Gelfand DH, Sninsky JJ, White TJ. 1990, New York, USA: Academic Press, 315-322.
Glass NL, Donaldson GC: Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995, 1995 (61): 1323-1330.
Templeton MD, Rikkerink EHA, Solon SL, Crowhurst RN: Cloning and Molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata. Gene. 1992, 122: 225-230. 10.1016/0378-1119(92)90055-T.
Carbone I, Kohn LM: A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999, 91: 553-556. 10.2307/3761358.
Edgar R: MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 2004, 5: 113-10.1186/1471-2105-5-113.
Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R: DNASP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. 2003, 19: 2496-2497. 10.1093/bioinformatics/btg359.
Librado P, Rozas J: DNASP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics Applications Note. 2009, 25: 1451-1452. 10.1093/bioinformatics/btp187.
Excoffier LG, Laval S, Schneider S: Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinformatics Online. 2005, 1: 47-50.
Salzburger W, Ewing GB, Von Haeseler A: The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol Ecol. 2011, 20: 1952-1963. 10.1111/j.1365-294X.2011.05066.x.
Peakall R, Smouse PE: Genalex 6: Genetic analysis in Excel-Population genetic software for teaching and research. Mol Ecol Notes. 2006, 6: 288-295. 10.1111/j.1471-8286.2005.01155.x.
Hudson RR, Boos DD, Kaplan NL: A statistical test for detecting geographic subdivision. Mol Biol Evol. 1992, 9: 138-151.
Hudson RR: A new statistic for detecting genetic differentiation. Genetics. 2000, 155: 2011-2014.
Vincze T, Posfai J, Roberts RJ: NEBcutter: A program to cleave DNA with restriction enzymes. Nuc Acid Res. 2003, 31: 3688-3691. 10.1093/nar/gkg526.
Ramdeen S, Rampersad SN: Intraspecific differentiation of Colletotrichum gloeosporioides sensu lato based on in silico multilocus PCR-RFLP fingerprinting. Mol Biotechnol. 2012, 53: 170-181.
Wei W, Robert ED, Ing-Ming L, Yan Z: Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Sys Evol Microbiol. 2007, 57: 1855-1867. 10.1099/ijs.0.65000-0.
Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics. 2000, 155: 945-959.
Falush D, Stephens M, Pritchard JK: Inference of population structure: Extensions to linked loci and correlated allele frequencies. Genetics. 2003, 164: 1567-1587.
Falush D, Stephens M, Pritchard JK: Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes. 2007, 7: 574-578. 10.1111/j.1471-8286.2007.01758.x.
Lewontin RC: The detection of linkage disequilibrium in molecular sequence data. Genetics. 1995, 140: 377-388.
Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989, 123: 585-595.
Fu YX, Li WH: Statistical tests of neutrality of mutations. Genetics. 1993, 133: 693-709.
Fu YX: Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997, 147: 915-925.
Zeng K, Fu YX, Shi S, Wu CI: Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics. 2006, 174: 1431-1439. 10.1534/genetics.106.061432.
Slatkin M, Hudson RR: Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics. 1991, 129: 555-562.
Rogers AR, Harpending H: Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol. 1992, 9: 552-569.
Beerli P, Felsenstein J: Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics. 1999, 152: 763-773.
Beerli P, Felsenstein J: Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA. 2001, 98: 4563-4568. 10.1073/pnas.081068098.
