Ca2+ channel blockers reverse iron overload by a new mechanism via divalent metal transporter-1
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fleming, R.E. & Sly, W.S. Mechanisms of iron accumulation in hereditary hemochromatosis. Annu. Rev. Physiol. 64, 663–680 (2002).
Pietrangelo, A. Hereditary hemochromatosis–a new look at an old disease. N. Engl. J. Med. 350, 2383–2397 (2004).
Feder, J.N. et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat. Genet. 13, 399–408 (1996).
Zoller, H., Pietrangelo, A., Vogel, W. & Weiss, G. Duodenal metal-transporter (DMT-1, NRAMP-2) expression in patients with hereditary haemochromatosis. Lancet 353, 2120–2123 (1999).
Kushner, J.P., Porter, J.P. & Olivieri, N.F. Secondary iron overload. Hematology Am. Soc. Hematol. Educ. Program 47–61 (2001).
Hershko, C., Link, G. & Cabantchik, I. Pathophysiology of iron overload. Ann. NY Acad. Sci. 850, 191–201 (1998).
Morgan, E.H. & Oates, P.S. Mechanisms and regulation of intestinal iron absorption. Blood Cells Mol. Dis. 29, 384–399 (2002).
Frazer, D.M. & Anderson, G.J. The orchestration of body iron intake: how and where do enterocytes receive their cues? Blood Cells Mol. Dis. 30, 288–297 (2003).
Hentze, M.W., Muckenthaler, M.U. & Andrews, N.C. Balancing acts: molecular control of mammalian iron metabolism. Cell 117, 285–297 (2004).
Kaplan, J. Mechanisms of cellular iron acquisition: another iron in the fire. Cell 111, 603–606 (2002).
McKie, A.T. et al. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291, 1755–1759 (2001).
Fleming, M.D. et al. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat. Genet. 16, 383–386 (1997).
Gunshin, H. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488 (1997).
Donovan, A. et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781 (2000).
McKie, A.T. et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell 5, 299–309 (2000).
Abboud, S. & Haile, D.J. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 275, 19906–19912 (2000).
Vulpe, C.D. et al. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat. Genet. 21, 195–199 (1999).
Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).
Gunshin, H. et al. Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J. Clin. Invest. 115, 1258–1266 (2005).
Fleming, M.D. et al. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc. Natl. Acad. Sci. USA 95, 1148–1153 (1998).
Xu, H., Jin, J., DeFelice, L.J., Andrews, N.C. & Clapham, D.E. A spontaneous, recurrent mutation in divalent metal transporter-1 exposes a calcium entry pathway. PLoS Biol. 2, E50 (2004).
Hubert, N. & Hentze, M.W. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function. Proc. Natl. Acad. Sci. USA 99, 12345–12350 (2002).
Ganz, T. Hepcidin–a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract. Res. Clin. Haematol. 18, 171–182 (2005).
Muckenthaler, M. et al. Relationships and distinctions in iron-regulatory networks responding to interrelated signals. Blood 101, 3690–3698 (2003).
Russell, E.S., McFarland, E.C. & Kent, E.L. Low viability, skin lesions, and reduced fertility associated with microcytic anemia in the mouse. Transplant. Proc. 2, 144–151 (1970).
Mackenzie, B., Ujwal, M.L., Chang, M.H., Romero, M.F. & Hediger, M.A. Divalent metal-ion transporter DMT1 mediates both H(+) -coupled Fe(2+) transport and uncoupled fluxes. Pflugers Arch. 451, 544–558 (2006).
Lam-Yuk-Tseung, S. & Gros, P. Distinct targeting and recycling properties of two isoforms of the iron transporter DMT1 (NRAMP2, Slc11A2). Biochemistry 45, 2294–2301 (2006).
Oudit, G.Y. et al. L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat. Med. 9, 1187–1194 (2003).
Musilkova, J. & Kovar, J. Additive stimulatory effect of extracellular calcium and potassium on non-transferrin ferric iron uptake by HeLa and K562 cells. Biochim. Biophys. Acta 1514, 117–126 (2001).
Hockerman, G.H., Peterson, B.Z., Johnson, B.D. & Catterall, W.A. Molecular determinants of drug binding and action on L-type calcium channels. Annu. Rev. Pharmacol. Toxicol. 37, 361–396 (1997).
Striessnig, J. Pharmacology, structure and function of cardiac L-type Ca(2+) channels. Cell. Physiol. Biochem. 9, 242–269 (1999).
Zhou, X.Y. et al. HFE gene knockout produces mouse model of hereditary hemochromatosis. Proc. Natl. Acad. Sci. USA 95, 2492–2497 (1998).
Bahram, S. et al. Experimental hemochromatosis due to MHC class I HFE deficiency: immune status and iron metabolism. Proc. Natl. Acad. Sci. USA 96, 13312–13317 (1999).
Iolascon, A. et al. Microcytic anemia and hepatic iron overload in a child with compound heterozygous mutations in DMT1 (SCL11A2). Blood 107, 349–354 (2006).
Mims, M.P. et al. Identification of a human mutation of DMT1 in a patient with microcytic anemia and iron overload. Blood 105, 1337–1342 (2005).
Beaumont, C. et al. Two new human DMT1 gene mutations in a patient with microcytic anemia, low ferritinemia, and liver iron overload. Blood 107, 4168–4170 (2006).
Ferguson, C.J. et al. Cellular localization of divalent metal transporter DMT-1 in rat kidney. Am. J. Physiol. Renal Physiol. 280, F803–F814 (2001).
Canonne-Hergaux, F. & Gros, P. Expression of the iron transporter DMT1 in kidney from normal and anemic mk mice. Kidney Int. 62, 147–156 (2002).
Abouhamed, M. et al. Divalent metal transporter 1 in the kidney proximal tubule is expressed in late endosomes/lysosomal membranes: implications for renal handling of protein-metal complexes. Am. J. Physiol. Renal Physiol. 290, F1525–F1533 (2006).
Wareing, M. et al. Altered dietary iron intake is a strong modulator of renal DMT1 expression. Am. J. Physiol. Renal Physiol. 285, F1050–F1059 (2003).
Gruen, A.B., Zhou, J., Morton, K.A. & Milstone, L.M. Photodegraded nifedipine stimulates uptake and retention of iron in human epidermal keratinocytes. J. Invest. Dermatol. 116, 774–777 (2001).
Savigni, D.L., Wege, D., Cliff, G.S., Meesters, M.L. & Morgan, E.H. Iron and transition metal transport into erythrocytes mediated by nifedipine degradation products and related compounds. Biochem. Pharmacol. 65, 1215–1226 (2003).
Ludwiczek, S., Theurl, I., Artner-Dworzak, E., Chorney, M. & Weiss, G. Duodenal HFE expression and hepcidin levels determine body iron homeostasis: modulation by genetic diversity and dietary iron availability. J. Mol. Med. 82, 373–382 (2004).