Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic

American Association for the Advancement of Science (AAAS) - Tập 371 Số 6526 - Trang 288-292 - 2021
Lewis Buss1, Carlos A. Prete2, Claudia M. M. Abrahim3, Alfredo Mendrone4,5, Tassila Salomon6,7, Cesar de Almeida‐Neto4,5, Rafael Freitas de Oliveira França8, Maria Carolina T. D. Belotti2, Maria P. S. S. Carvalho3, Allyson Guimarães Costa3, Myuki Alfaia Esashika Crispim3, Suzete C. Ferreira4,5, Nelson Abrahim Fraiji3, Susie Gurzenda9, Charles Whittaker10, Leonardo Tadashi Kamaura11, Pedro Losco Takecian11, Pedro S. Peixoto11, Márcio K. Oikawa12, Anna S. Nishiya4,5, Vanderson Rocha4,5, Nanci A. Salles4, Andreza Aruska de Souza Santos13, Martirene A. da Silva3, Brian Custer14,15, Kris V. Parag16, Manoel Barral‐Netto17, Moritz U. G. Kraemer18, Rafael H. M. Pereira19, Oliver G. Pybus18, Michael P. Busch14,15, Márcia C. Castro9, Christopher Dye18, Vítor H. Nascimento2, Nuno R. Faria1,18,16, Éster Cerdeira Sabino1
1Departamento de Molestias Infecciosas e Parasitarias and Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
2Departamento de Engenharia de Sistemas Eletrônicos, Escola Politécnica da Universidade de São Paulo, São Paulo, Brazil
3Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Brazil
4Fundação Pró-Sangue Hemocentro de São Paulo, São Paulo, Brazil
5Laboratório de Investigação Médica em Patogênese e Terapia dirigida em Onco-Imuno-Hematologia (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
6Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Brazil
7Fundação Hemominas–Fundação Centro de Hematologia e Hemoterapia de Minas Gerais, Belo Horizonte, Brazil.
8Department of Virology and Experimental Therapy, Institute Aggeu Magalhaes, Oswaldo Cruz Foundation, Recife, Brazil.
9Department of Global Health and Population, Harvard T H Chan School of Public Health, Boston, MA, USA
10Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
11Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
12Center of Mathematics, Computing and Cognition–Universidade Federal do ABC, São Paulo, Brazil.
13Oxford School of Global and Area Studies, Latin American Centre, University of Oxford, Oxford, UK.
14University of California San Francisco, CA. USA
15Vitalant Research Institute, San Francisco, CA, USA
16MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, UK.
17Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
18Department of Zoology, University of Oxford, Oxford, UK
19Institute for Applied Economic Research (IPEA), Brasília, Brazil

Tóm tắt

Attack rate in Manaus

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) incidence peaked in Manaus, Brazil, in May 2020 with a devastating toll on the city's inhabitants, leaving its health services shattered and cemeteries overwhelmed. Buss et al. collected data from blood donors from Manaus and São Paulo, noted when transmission began to fall, and estimated the final attack rates in October 2020 (see the Perspective by Sridhar and Gurdasani). Heterogeneities in immune protection, population structure, poverty, modes of public transport, and uneven adoption of nonpharmaceutical interventions mean that despite a high attack rate, herd immunity may not have been achieved. This unfortunate city has become a sentinel for how natural population immunity could influence future transmission. Events in Manaus reveal what tragedy and harm to society can unfold if this virus is left to run its course.

Science , this issue p. 288 ; see also p. 230

Từ khóa


Tài liệu tham khảo

10.1016/S2214-109X(20)30387-9

10.1126/science.abd2161

10.1590/0102-311x00120020

10.1038/s41562-020-0928-4

10.1007/s11538-005-9047-7

10.1590/s1678-9946202062030

10.1186/1742-7622-9-9

10.1186/1742-7622-9-9

Public Health England “Evaluation of Abbott SARS-CoV-2 IgG assay for the detection of anti-SARS-CoV-2 antibodies” (2020); www.gov.uk/government/publications/covid-19-laboratory-evaluations-of-serological-assays.

10.1038/s41467-020-18468-8

D. W. Eyre S. F. Lumley D. O’Donnell N. E. Stoesser P. C. Matthews A. Howarth S. B. Hatch B. D. Marsden S. Cox T. James R. Cornall D. I. Stuart G. Screaton D. Ebner D. W. Crook C. P. Conlon K. Jeffery T. M. Walker T. E. Peto Stringent thresholds for SARS-CoV-2 IgG assays result in under-detection of cases reporting loss of taste/smell. medRxiv 20159038 [preprint]. 25 July 2020.20159038

10.1016/j.jinf.2020.07.031

10.1038/s41591-020-0965-6

10.1093/infdis/jiaa659

Public Health England “Evaluation of Roche Elecsys Anti-SARS-CoV-2 serology assay for the detection of anti-SARS-CoV-2 antibodies” (2020); www.gov.uk/government/publications/covid-19-laboratory-evaluations-of-serological-assays.

10.1016/S1473-3099(20)30243-7

N. Brazeau R. Verity S. Jenks H. Fu C. Whittaker P. Winskill I. Dorigatti P. Walker S. Riley R. Schnekenberg H. Heltgebaum T. Mellan S. Mishra H. Unwin O. Watson Z. Cucunuba Perez M. Baguelin L. Whittles S. Bhatt A. Ghani N. Ferguson L. Okell “Report 34: COVID-19 infection fatality ratio: estimates from seroprevalence” (Imperial College London 2020).

MAVE Grupo de Métodos Analíticos em Vigilância Epidemiológica (PROCC/Fiocruz e EMAp/FGV) Resumo do Boletim InfoGripe–Semana Epidemiológica (SE) 42; https://gitlab.procc.fiocruz.br/mave/repo/tree/master/Boletins%20do%20InfoGripe.

10.1126/science.abc6810

Our World in Data “Coronavirus Pandemic (COVID-19)” (2020); https://ourworldindata.org/coronavirus.

10.2105/AJPH.2013.301704

10.1016/S0140-6736(20)31483-5

10.1016/S0140-6736(20)31304-0

10.1126/science.abe1916

10.1016/S2214-109X(20)30467-8

SoroEpi MSP: Serial soroepidemiological survey to monitor the prevalence of SARS-CoV-2 infection in the Municipality of São Paulo SP Brazil (2020); www.monitoramentocovid19.org/.

10.6061/clinics/2020/e2013

10.1038/s41591-020-1104-0

10.2807/1560-7917.ES.2020.25.10.2000180

10.1038/s41591-020-1083-1

10.1017/S0950268800048019

S. F. Lumley. The duration dynamics and determinants of SARS-CoV-2 antibody responses in individual healthcare workers. medRxiv 20224824 [preprint]. 4 November 2020.20224824

10.1126/science.abd7728

10.1093/cid/ciaa1275

10.1126/science.abe5960

Data and code for “Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic”; doi:doi.org/10.5061/dryad.c59zw3r5n.

10.1155/2011/608719

10.1093/oxfordjournals.aje.a112510

K. Parag C. Donnelly Optimising Renewal Models for Real-Time Epidemic Prediction and Estimation. bioRxiv [preprint]. 8 November 2019.835181

N. Ferguson D. Laydon G. Nedjati Gilani N. Imai K. Ainslie M. Baguelin S. Bhatia A. Boonyasiri Z. Cucunuba Perez G. Cuomo-Dannenburg A. Dighe I. Dorigatti H. Fu K. Gaythorpe W. Green A. Hamlet W. Hinsley L. Okell S. Van Elsland H. Thompson R. Verity E. Volz H. Wang Y. Wang P. Walker P. Winskill C. Whittaker C. Donnelly S. Riley A. Ghani “Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand” (Imperial College London 2020).

K. V. Parag Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves. medRxiv [preprint]. 18 September 2020.20194589