Flow propagation velocity is not a simple index of diastolic function in early filling. A comparative study of early diastolic strain rate and strain rate propagation, flow and flow propagation in normal and reduced diastolic function

Cardiovascular Ultrasound - Tập 1 - Trang 1-10 - 2003
Asbjørn Støylen1, Gunnar Skjelvan2, Terje Skjaerpe1
1Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
2Trondheim Heart Centre, Trondheim, Norway

Tóm tắt

Strain Rate Imaging shows the filling phases of the left ventricle to consist of a wave of myocardial stretching, propagating from base to apex. The propagation velocity of the strain rate wave is reduced in delayed relaxation. This study examined the relation between the propagation velocity of strain rate in the myocardium and the propagation velocity of flow during early filling. 12 normal subjects and 13 patients with treated hypertension and normal systolic function were studied. Patients and controls differed significantly in diastolic early mitral flow measurements, peak early diastolic tissue velocity and peak early diastolic strain rate, showing delayed relaxation in the patient group. There were no significant differences in EF or diastolic diameter. Strain rate propagation velocity was reduced in the patient group while flow propagation velocity was increased. There was a negative correlation (R = -0.57) between strain rate propagation and deceleration time of the mitral flow E-wave (R = -0.51) and between strain rate propagation and flow propagation velocity and there was a positive correlation (R = 0.67) between the ratio between peak mitral flow velocity / strain rate propagation velocity and flow propagation velocity. The present study shows strain rate propagation to be a measure of filling time, but flow propagation to be a function of both flow velocity and strain rate propagation. Thus flow propagation is not a simple index of diastolic function in delayed relaxation.

Tài liệu tham khảo

Heimdal A, Stoylen A, Torp H, Skjaerpe T: Real-time strain rate imaging of the left ventricle by ultrasound. J Am Soc Echocardiogr. 1998, 11: 1013-1019. Stoylen A, Heimdal A, Bjornstad K, Torp H, Skjaerpe T: Strain rate imaging by ultrasound in the diagnosis of regional dysfunction of the left ventricle. Echocardiography. 1999, 16: 321-329. Stoylen A, Heimdal A, Bjornstad K, Wiseth R, Vik-Mo H, Torp H, Angelsen B, Skjærpe T: Strain rate imaging by ultrasound in the diagnosis of coronary artery disease. J Am Soc Echocardiogr. 2000, 13: 1053-1064. 10.1067/mje.2000.106573 Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA: Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation. 2000, 102: 1158-1164. Edvardsen T, Gerber BL, Garot J, Bluemke DA, Lima JA, Smiseth OA: Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation. 2002, 106: 50-56. 10.1161/01.CIR.0000019907.77526.75 Slørdahl SA, Bjærum S, Amundsen BH, Støylen A, Heimdal A, Rabben SI, Torp H: High frame rate strain rate imaging of the ventricular septum in healthy subjects. Eur J Ultrasound. 2001, 14: 149-155. 10.1016/S0929-8266(01)00156-2 Stoylen A, Slordahl S, Skjelvan G: Strain Rate Imaging in Normal and Reduced Diastolic Function: Comparison with Pulsed Doppler Tissue Imaging of the Mitral Annulus. J Am Soc Echocardiogr. 14: 264-274. Voight JU, Lindenmeier G, Cubra A, Werner D, Flaschkampf FA, Hatle L, Sutherland GR: Does strain rate imaging offer new insights into left ventricular function? [Abstract]. European heart Journal. 2000, 21 (suppl): 334. Rodevand O, Bjornerheim R, Edvardsen T, Smiseth OA, Ihlen H: Diastolic Flow Pattern in the Normal Left Ventricle. J Am Soc Echocardiogr. 1999, 12: 500-507. Vierendeels JA, Dick E, Verdonck PR: Hydrodynamics of Color M-mode Doppler Flow Wave Propagation Velocity V(p): A Computer Study. J Am Soc Echocardiogr. 2002, 15: 219-224. 10.1067/mje.2002.115456 Brun P, Triboully C, Duval A-M: Left ventricular flow propagation during early filling is related to wall relaxation: A colour M-mode analysis. J Am Coll Cardiol. 1992, 20: 420-432. Stugaard M, Steen T, Lundervold A: Visual assessment of intra ventricular flow from colour M-mode Doppler images. Int J Cardiac Imaging. 1994, 10: 279-289. Nagueh SF, Middleton KJ, Kopelen HA: Doppler Tissue Imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am coll cardiol. 1997, 30: 1527-1533. 10.1016/S0735-1097(97)00344-6 Garcia MJ, Smedira NG, Greenberg NL: Color M-mode Doppler flow propagation is a preload insensitive index of left ventricular relaxation: animal and human validation. J Am Coll Cardiol. 2000, 35: 201-208. 10.1016/S0735-1097(99)00503-3 Steen T, Steen S: Filling of a model left ventricle studied by colour M mode Doppler. Cardiovascular research. 1994, 28: 1821-1827. Dahlof B, Devereux R, De Faire U: The Losartan Intervention For Endpoint reduction (LIFE) in Hypertension study: rationale, design, and methods. The LIFE Study Group. Am J Hypertens. 1997, 10: 705-713. 10.1016/S0895-7061(97)00054-X Schiller NB, Shah PM, Crawford M: Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. J Am Soc Echocardiogr. 1989, 2: 358-367. Farias CA, Rodriguez L, Garcia MJ: Assessment of Diastolic Function by Tissue Doppler Echocardiography: Comparison with Standard Transmitral and Pulmonary Venous Flow. J Am Soc Echocardiogr. 1999, 12: 609-617. Takatsuji H, Mikami T, Urasawa K: A new approach for evaluation of left ventricular diastolic function: Spatial and temporal analysis of left ventricular filling flow propagation by colour M-mode Doppler echocardiography. J Am Coll Cardiol. 1996, 27: 365-371. 10.1016/0735-1097(96)81240-X Stugaard M: Assessment of diastolic function by colour M-mode Doppler of intraventricular filling. Heartforum. 1997, 37-44. Nagueh SF, Lakkis NM, Middleton KJ: Doppler estimation of left ventricular filling pressures in patients with hypertrophic cardiomyopathy. Circulation. 1999, 99: 254-261. Houlind K, Schroeder AP, Egeblad H: Age-dependent changes in spatial and temporal blood velocity distribution of early left ventricular filling. Magn Reson Imaging. 1999, 17: 859-868. 10.1016/S0730-725X(99)00018-1 Sessoms MW, Lisauskas J, Kovács SJ: The Left Ventricular Color M-mode Doppler Flow Propagation Velocity Vp : In Vivo Comparison of Alternative Methods Including Physiologic Implications. J Am Soc Echocardiogr. 2002, 15: 339-348. 10.1067/mje.2002.117899 Baccani B, Domenichini F, Pedrizzetti G, Tonti G: Fluid dynamics of the left ventricular llingin dilated cardiomyopathy. Journal of Biomechanics. 2002, 35: 665-671. 10.1016/S0021-9290(02)00005-2 Appleton CP, Hatle LK, Popp RL: Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined hemodynamic and Doppler echocardiographic study. J Am Coll Cardiol. 1988, 12: 426-440. Møller JE, Søndergaard E, Seward JB, Appleton CP, Egstrup K: Ratio of Left Ventricular Peak E-Wave Velocity to Flow Propagation Velocity Assessed by Color M-mode Doppler Echocardiography in First Myocardial Infarction. Prognostic and Clinical Implications. J Am Coll Cardiol. 2000, 35: 363-370. 10.1016/S0735-1097(99)00575-6 Wilkenshoff UM, Hatle L, Sovany A, Wranne B, Sutherland GR: Age-dependent changes in regional diastolic function evaluated by color Doppler myocardial imaging: a comparison with pulsed Doppler indexes of global function. J Am Soc Echocardiogr. 2001, 14: 959-969. 10.1067/mje.2001.116321 Urheim S, Edvardsen T, Steine K, Skulstad H, Lyseggen E, Rodevand O, Smiseth OA: Post-systolic shortening of ischemic myocardium – a mechanism of abnormal intraventricular filling. Am J Physiol Heart Circ Physiol. 2003,